java多线程5:线程间的通信

在多线程系统中,彼此之间的通信协作非常重要,下面来聊聊线程间通信的几种方式。

wait/notify

想像一个场景,A、B两个线程操作一个共享List对象,A对List进行add操作,B线程等待List的size=500时就打印记录日志,这要怎么处理呢?

一个办法就是,B线程while (true) { if(List.size == 500) {打印日志} },这样两个线程之间就有了通信,B线程不断通过轮训来检测 List.size == 500 这个条件。

这样可以实现我们的需求,但是也带来了问题:CPU把资源浪费了B线程的轮询操作上,因为while操作并不释放CPU资源,导致了CPU会一直在这个线程中做判断操作。

这要非常浪费CPU资源,所以就需要有一种机制来实现减少CPU的资源浪费,而且还可以实现在多个线程间通信,它就是“wait/notify”机制。

 

定义两个线程类:

public class MyThread1_1 extends Thread {

    private Object lock;

    public MyThread1_1(Object lock) {
        this.lock = lock;
    }

    public void run() {
        try {
            synchronized (lock) {
                System.out.println(Thread.currentThread().getName() + "开始------wait time = " + System.currentTimeMillis());
                lock.wait();
                System.out.println(Thread.currentThread().getName() + "开始------sleep time = " + System.currentTimeMillis());
                Thread.sleep(2000);
                System.out.println(Thread.currentThread().getName() + "结束------sleep time = " + System.currentTimeMillis());
                System.out.println(Thread.currentThread().getName() + "结束------wait time = " + System.currentTimeMillis());
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

  

public class MyThread1_2 extends Thread {

    private Object lock;

    public MyThread1_2(Object lock) {
        this.lock = lock;
    }

    public void run() {
        try {
            synchronized (lock) {
                System.out.println(Thread.currentThread().getName() + "开始------notify time = " + System.currentTimeMillis());
                lock.notify();
                System.out.println(Thread.currentThread().getName() + "开始------sleep time = " + System.currentTimeMillis());
                Thread.sleep(2000);
                System.out.println(Thread.currentThread().getName() + "结束------sleep time = " + System.currentTimeMillis());
                System.out.println(Thread.currentThread().getName() + "结束------notify time = " + System.currentTimeMillis());
            }
        } catch (Exception e) {
            e.printStackTrace();
        }
    }
}

  

  测试方法,myThread1先执行,然后sleep 一秒后,myThread2再执行

@Test
    public void test1() throws InterruptedException {
        Object object = new Object();
        MyThread1_1 myThread1_1 = new MyThread1_1(object);
        MyThread1_2 myThread1_2 = new MyThread1_2(object);
        myThread1_1.start();
        Thread.sleep(1000);
        myThread1_2.start();

        myThread1_1.join();
        myThread1_2.join();

    }

  执行结果:

Thread-0开始------wait time = 1639464183921
Thread-1开始------notify time = 1639464184925
Thread-1开始------sleep time = 1639464184925
Thread-1结束------sleep time = 1639464186928
Thread-1结束------notify time = 1639464186928
Thread-0开始------sleep time = 1639464186928
Thread-0结束------sleep time = 1639464188931
Thread-0结束------wait time = 1639464188931

  可以看到第一行和第二行 开始执行之间只间隔了1s,说明wait方法确实进入等待,

而且没有继续执行wait后面的sleep 2秒,而是执行了notify方法,说明wait方法可以使调用该方法的线程释放共享资源的锁,然后从运行状态退出,进入等待队列,直到被再次唤醒。

第二行和第五行间隔2秒钟,说明notify方法不会释放共享资源的锁。

第6行 说明notify执行完后,唤醒了刚才wait的线程,从而继续执行后面的sleep方法。

说明notify方法可以随机唤醒等待队列中等待同一共享资源的“一个”线程,并使该线程退出等待队列,进入可运行状态,也就是notify()方法仅通知“一个”线程。

另外还有notifyAll()方法可以使所有正在等待队列中等待同一共享资源的“全部”线程从等待状态退出,进入可运行状态。

此时,优先级最高的那个线程最先执行,但也有可能是随机执行,因为这要取决于JVM虚拟机的实现。

 

方法join

前面的测试方法中几乎都使用了join方法,那么这个方法到底起到什么作用呢?

在很多情况下,主线程创建并启动子线程,如果子线程中要进行大量的耗时运算,主线程往往将早于子线程结束之前结束,

所以在主线程中使用join方法的作用就是让主线程等待子线程线程对象销毁。

 

/**
     * Waits at most {@code millis} milliseconds for this thread to
     * die. A timeout of {@code 0} means to wait forever.
     *
     * <p> This implementation uses a loop of {@code this.wait} calls
     * conditioned on {@code this.isAlive}. As a thread terminates the
     * {@code this.notifyAll} method is invoked. It is recommended that
     * applications not use {@code wait}, {@code notify}, or
     * {@code notifyAll} on {@code Thread} instances.
     *
     * @param  millis
     *         the time to wait in milliseconds
     *
     * @throws  IllegalArgumentException
     *          if the value of {@code millis} is negative
     *
     * @throws  InterruptedException
     *          if any thread has interrupted the current thread. The
     *          <i>interrupted status</i> of the current thread is
     *          cleared when this exception is thrown.
     */
    public final synchronized void join(long millis)
    throws InterruptedException {
        long base = System.currentTimeMillis();
        long now = 0;

        if (millis < 0) {
            throw new IllegalArgumentException("timeout value is negative");
        }

        if (millis == 0) {
            while (isAlive()) {
                wait(0);
            }
        } else {
            while (isAlive()) {
                long delay = millis - now;
                if (delay <= 0) {
                    break;
                }
                wait(delay);
                now = System.currentTimeMillis() - base;
            }
        }
    }

  看下jdk API的源码可以看到,其实join内部使用的还是wait方法进行等待,

join(long millis)方法的一个重点是要区分出和sleep(long millis)方法的区别:

sleep(long millis)不释放锁,join(long millis)释放锁,因为join方法内部使用的是wait(),因此会释放锁。join()其实就是join(0)而已。

 

ThreadLocal类

ThreadLocal不是用来解决共享对象的多线程访问问题的,而是实现每一个线程都维护自己的共享变量,起到线程隔离的作用。

关于ThreadLocal源码分析可以参考这篇文章:https://www.cnblogs.com/xrq730/p/4854813.html

下面看个ThreadLocal的例子:

public class Tools {

    public static ThreadLocal<Object> tl = new ThreadLocal<Object>();

}

  两个线程类,分别向ThreadLocal里设置值

public class MyThread1_1 extends Thread {

    @Override
    public void run() {
        try {
            for (int i = 0; i < 10; i++) {
                Tools.tl.set("ThreadA" + (i + 1));
                System.out.println("ThreadA get Value=" + Tools.tl.get());
                Thread.sleep(200);
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}
public class MyThread1_2 extends Thread {

    @Override
    public void run() {
        try {
            for (int i = 0; i < 10; i++) {
                Tools.tl.set("ThreadB" + (i + 1));
                System.out.println("ThreadB get Value=" + Tools.tl.get());
                Thread.sleep(200);
            }
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }
}

  

@Test
    public void test1() {
        try {
            MyThread1_1 a = new MyThread1_1();
            MyThread1_2 b = new MyThread1_2();
            a.start();
            b.start();
            a.join();
            b.join();
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

  执行结果:

ThreadB get Value=ThreadB1
ThreadA get Value=ThreadA1
ThreadA get Value=ThreadA2
ThreadB get Value=ThreadB2
ThreadA get Value=ThreadA3
ThreadB get Value=ThreadB3
ThreadA get Value=ThreadA4
ThreadB get Value=ThreadB4
ThreadB get Value=ThreadB5
ThreadA get Value=ThreadA5
ThreadB get Value=ThreadB6
ThreadA get Value=ThreadA6
ThreadB get Value=ThreadB7
ThreadA get Value=ThreadA7
ThreadB get Value=ThreadB8
ThreadA get Value=ThreadA8
ThreadA get Value=ThreadA9
ThreadB get Value=ThreadB9
ThreadB get Value=ThreadB10
ThreadA get Value=ThreadA10

  可以看到两个线程取出的值没有重复也没有互相影响,其实它内部变化的只是线程本身的 ThreadLocalMap。

感兴趣的还可以去看看 InheritableThreadLocal,它可以在子线程中取得父线程继承下来的值。

 

参考文献

1:《Java并发编程的艺术》

2:《Java多线程编程核心技术》

 

posted @ 2021-12-14 15:34  让我发会呆  阅读(406)  评论(0编辑  收藏  举报