【LOJ6067】【2017 山东一轮集训 Day3】第三题 FFT

【LOJ6067】【2017 山东一轮集训 Day3】第三题 FFT

题目大意

  给你 \(n,b,c,d,e,a_0,a_1,\ldots,a_{n-1}\),定义

\[\begin{align} x_k&=b\times c^{4k}+d\times c^{2k}+e\\ f(x)&=\sum_{i=0}^{n-1}a_ix^i \end{align} \]

  求 \(f(x_0),f(x_1),\ldots,f(x_{n-1})\)

  对 \({10}^6+3\) 取模。

题解

  直接多项式多点求值(显然)会TLE。

  当 \(c=0\) 时:

\[\begin{align} x_k&= \begin{cases} b+d+e,&k=0\\ e,&k\neq 0\\ \end{cases} \end{align} \]

  直接求就好了。

  当 \(c\neq 0,b=0\) 时:

\[\begin{align} f(x_k)&=\sum_{i=0}^{n-1}a_i{(dc^{2k}+e)}^i\\ &=\sum_{i=0}^{n-1}a_i\sum_{j=0}^{i}{(dc^{2k})}^je^{i-j}\binom{i}{j}\\ &=\sum_{j=0}^{n-1}\frac{1}{j!}d^jc^{2kj}\sum_{i=j}^{n-1}i!a_ie^{i-j}\frac{1}{(i-j)!}\\ &=\sum_{j=0}^{n-1}\frac{1}{j!}d^jc^{2kj}\sum_{i=0}^{n-j-1}(n-i-1)!a_{n-i-1}e^{(n-i-1)-j}\frac{1}{((n-i-1)-j)!}\\ &=\sum_{j=0}^{n-1}\frac{1}{j!}d^jc^{2kj}g_j\\ &=\sum_{j=0}^{n-1}\frac{1}{j!}d^jc^{k^2-({k-j)}^2+j^2}g_j\\ &=c^{k^2}\sum_{j=0}^{n-1}\frac{1}{j!}d^jc^{j^2}g_j\frac{1}{c^{{(k-j)}^2}} \end{align} \]

  当 \(c\neq 0,b\neq 0\) 时:

\[\begin{align} bc^{4k}+dc^{2k}+e&=b(c^{4k}+\frac{d}{b}c^{2k})+e\\ &=b(c^{4k}+\frac{d}{b}c^{2k}+{(\frac{d}{2b})}^2-{(\frac{d}{2b})}^2)+e\\ &=b{(c^{2k}+\frac{d}{2b})}^2-\frac{d^2}{4b}+e\\ &=b{(c^{2k}+d')}^2+e'\\ \end{align} \]

  然后用 \(d'\)\(e'\) 替换原来的 \(d\)\(e\)

\[\begin{align} f(x_k)&=\sum_{i=0}^{n-1}a_i{(b{(c^{2k}+d)}^2+e)}^i\\ &=\sum_{i=0}^{n-1}a_i\sum_{j=0}^{i}b^j{(c^{2k}+d)}^{2j}e^{i-j}\binom{i}{j}\\ &=\sum_{j=0}^{n-1}b^j{(c^{2k}+d)}^{2j}\frac{1}{j!}\sum_{i=j}^{n-1}a_ii!e^{i-j}\frac{1}{i-j}\\ &=\sum_{j=0}^{n-1}b^j{(c^{2k}+d)}^{2j}\frac{1}{j!}g_j\\ &=\sum_{j=0}^{n-1}b^j\frac{1}{j!}g_j\sum_{i=0}^{2j}c^{2ki}d^{2j-i}\binom{2j}{i}\\ &=\sum_{i=0}^{2n-2}c^{2ki}\frac{1}{i!}\sum_{j=\lceil\frac{i}{2}\rceil}^{n-1}\frac{(2j)!}{j!}b^jg_j\frac{1}{(2j-i)!}d^{2j-i}\\ &=\sum_{i=0}^{2n-2}c^{2ki}\frac{1}{i!}\sum_{2j\geq i}^{2n-2}\frac{(2j)!}{j!}b^jg_j\frac{1}{(2j-i)!}d^{2j-i}\\ &=\sum_{i=0}^{2n-2}c^{2ki}\frac{1}{i!}h_i\\ &=c^{k^2}\sum_{i=0}^{2n-2}\frac{1}{i!}c^{i^2}h_i\frac{1}{c^{{(i-k)}^2}} \end{align} \]

  那些卷积都可以FFT(任意模数FFT)。

  时间复杂度:\(O(n\log n)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<functional>
#include<cmath>
#include<vector>
#include<assert.h>
//using namespace std;
using std::min;
using std::max;
using std::swap;
using std::sort;
using std::reverse;
using std::random_shuffle;
using std::lower_bound;
using std::upper_bound;
using std::unique;
typedef long long ll;
typedef unsigned long long ull;
typedef std::pair<int,int> pii;
typedef std::pair<ll,ll> pll;
void open(const char *s){
#ifndef ONLINE_JUDGE
	char str[100];sprintf(str,"%s.in",s);freopen(str,"r",stdin);sprintf(str,"%s.out",s);freopen(str,"w",stdout);
#endif
}
int rd(){int s=0,c,b=0;while(((c=getchar())<'0'||c>'9')&&c!='-');if(c=='-'){c=getchar();b=1;}do{s=s*10+c-'0';}while((c=getchar())>='0'&&c<='9');return b?-s:s;}
void put(int x){if(!x){putchar('0');return;}static int c[20];int t=0;while(x){c[++t]=x%10;x/=10;}while(t)putchar(c[t--]+'0');}
int upmin(int &a,int b){if(b<a){a=b;return 1;}return 0;}
int upmax(int &a,int b){if(b>a){a=b;return 1;}return 0;}
const ll p=1000003;
const int N=530000;
ll fp(ll a,ll b)
{
	if(!b)
		return 1;
	b=(b%(p-1)+p-1)%(p-1);
	ll s=1;
	for(;b;b>>=1,a=a*a%p)
		if(b&1)
			s=s*a%p;
	return s;
}
namespace fft
{
	const int W=524288;
	const ll M=1000;
	typedef double db;
	db pi=acos(-1);
	struct cp
	{
		db x,y;
		cp(db a=0,db b=0):x(a),y(b){}
	};
	cp operator +(cp a,cp b){return cp(a.x+b.x,a.y+b.y);}
	cp operator -(cp a,cp b){return cp(a.x-b.x,a.y-b.y);}
	cp operator *(cp a,cp b){return cp(a.x*b.x-a.y*b.y,a.x*b.y+a.y*b.x);}
	cp operator /(cp a,int b){return cp(a.x/b,a.y/b);}
	cp conj(cp a){return cp(a.x,-a.y);}
	cp muli(cp a){return cp(-a.y,a.x);}
	cp divi(cp a){return cp(a.y,-a.x);}
	int rev[N];
	cp *w[20];
	void fft(cp *a,int n,int t)
	{
		for(int i=1;i<n;i++)
		{
			rev[i]=(rev[i>>1]>>1)|(i&1?n>>1:0);
			if(rev[i]>i)
				swap(a[rev[i]],a[i]);
		}
		for(int i=2,s=1;i<=n;i<<=1,s++)
			for(int j=0;j<n;j+=i)
				for(int k=0;k<i/2;k++)
				{
					cp u=a[j+k];
					cp v=a[j+k+i/2]*w[s][k];
					a[j+k]=u+v;
					a[j+k+i/2]=u-v;
				}
		if(t==-1)
		{
			reverse(a+1,a+n);
			for(int i=0;i<n;i++)
				a[i]=a[i]/n;
		}
	}
	void dft(db *a,db *b,cp *c,cp *d,int n)
	{
		static cp a1[N],a2[N];
		for(int i=0;i<n;i++)
			a1[i]=cp(a[i],b[i]);
		fft(a1,n,1);
		for(int i=0;i<n;i++)
			a2[i]=conj(a1[i]);
		reverse(a2+1,a2+n);
		for(int i=0;i<n;i++)
		{
			c[i]=(a1[i]+a2[i])/2;
			d[i]=divi(a1[i]-a2[i])/2;
		}
	}
	void idft(db *a,db *b,cp *c,cp *d,int n)
	{
		static cp a1[N];
		for(int i=0;i<n;i++)
			a1[i]=c[i]+muli(d[i]);
		fft(a1,n,-1);
		for(int i=0;i<n;i++)
		{
			a[i]=a1[i].x;
			b[i]=a1[i].y;
		}
	}
	void init()
	{
		for(int i=1;i<=19;i++)
			w[i]=new cp[1<<(i-1)];
		for(int i=0;i<W/2;i++)
			w[19][i]=cp(cos(2*pi/W*i),sin(2*pi/W*i));
		for(int i=18;i>=1;i--)
			for(int j=0;j<1<<(i-1);j++)
				w[i][j]=w[i+1][j<<1];
	}
	void mul(ll *a,ll *b,ll *c,int n,int m,int l)
	{
		static db a1[N],a2[N],b1[N],b2[N],c1[N],c2[N],d1[N],d2[N];
		static cp a3[N],a4[N],b3[N],b4[N],c3[N],c4[N],d3[N],d4[N];
		int k=1;
		while(k<=n+m)
			k<<=1;
		for(int i=0;i<k;i++)
			a1[i]=a2[i]=b1[i]=b2[i]=0;
		for(int i=0;i<=n;i++)
		{
			a[i]=(a[i]+p)%p;
			a1[i]=a[i]/M;
			a2[i]=a[i]%M;
		}
		for(int i=0;i<=m;i++)
		{
			b[i]=(b[i]+p)%p;
			b1[i]=b[i]/M;
			b2[i]=b[i]%M;
		}
		dft(a1,a2,a3,a4,k);
		dft(b1,b2,b3,b4,k);
		for(int i=0;i<k;i++)
		{
			c3[i]=a3[i]*b3[i];
			c4[i]=a3[i]*b4[i];
			d3[i]=a4[i]*b3[i];
			d4[i]=a4[i]*b4[i];
		}
		idft(c1,c2,c3,c4,k);
		idft(d1,d2,d3,d4,k);
		for(int i=0;i<=l;i++)
			c[i]=((ll)(c1[i]+0.5)%p*M%p*M%p+(ll)(c2[i]+0.5)%p*M%p+(ll)(d1[i]+0.5)%p*M%p+(ll)(d2[i]+0.5)%p)%p;
	}
}
int n;
ll B,C,D,E;
ll a[N];
ll inv[N],fac[N],ifac[N];
void init()
{
	inv[1]=fac[0]=fac[1]=ifac[0]=ifac[1]=1;
	for(int i=2;i<=200000;i++)
	{
		inv[i]=-p/i*inv[p%i]%p;
		inv[i]=(inv[i]+p)%p;
		fac[i]=fac[i-1]*i%p;
		ifac[i]=ifac[i-1]*inv[i]%p;
	}
}
namespace pregao
{
	ll b[N],c[N],s[N];
	void gao()
	{
		for(int i=0;i<n;i++)
		{
			b[i]=a[n-i-1]*fac[n-i-1]%p;
			c[i]=ifac[i]*fp(E,i)%p;
		}
		fft::mul(b,c,s,n-1,n-1,n-1);
		reverse(s,s+n);
	}
}
namespace gao1
{
	ll d[N],e[N],f[N],g[N],h[N],ans[N];
	void gao()
	{
		pregao::gao();
		for(int i=0;i<n;i++)
		{
			d[i]=pregao::s[i]*fp(D,i)%p*fp(C,(ll)i*i)%p*ifac[i]%p;
			e[i]=fp(C,-(ll)i*i);
		}
		fft::mul(d,e,f,n-1,n-1,n-1);
		reverse(d,d+n);
		e[0]=0;
		fft::mul(d,e,g,n-1,n-1,n-1);
		for(int i=0;i<n;i++)
		{
			ans[i]=((f[i]+g[n-i-1])%p+p)%p;
			ans[i]=ans[i]*fp(C,(ll)i*i)%p;
		}
		for(int i=0;i<n;i++)
			printf("%lld\n",ans[i]);
	}
}
namespace gao2
{
	ll b[N],c[N],d[N],e[N],f[N],g[N],ans[N];
	void gao()
	{
		E=(E-D*D%p*fp(4*B,p-2)%p+p)%p;
		D=D*fp(2*B,p-2)%p;
		pregao::gao();
		for(int i=0;i<n;i++)
			b[2*n-2*i-2]=fac[2*i]*ifac[i]%p*pregao::s[i]%p*fp(B,i)%p;
		for(int i=0;i<2*n-1;i++)
			c[i]=fp(D,i)*ifac[i]%p;
		fft::mul(b,c,d,2*n-2,2*n-2,2*n-2);
		reverse(d,d+2*n-1);
		for(int i=0;i<2*n-1;i++)
		{
			d[i]=d[i]*ifac[i]%p*fp(C,(ll)i*i)%p;
			e[i]=fp(C,-(ll)i*i);
		}
		fft::mul(d,e,f,n-1,n-1,n-1);
		reverse(d,d+2*n-1);
		e[0]=0;
		fft::mul(d,e,g,2*n-2,2*n-2,2*n-2);
		for(int i=0;i<n;i++)
			ans[i]=(fp(C,(ll)i*i)*(f[i]+g[2*n-i-2])%p+p)%p;
		for(int i=0;i<n;i++)
			printf("%lld\n",ans[i]);
	}
}
namespace gao0
{
	void gao()
	{
		ll ans=0;
		for(int i=n-1;i>=0;i--)
		{
			ans=ans*(E+B+D)%p;
			ans=(ans+a[i])%p;
		}
		printf("%lld\n",ans);
		ans=0;
		for(int i=n-1;i>=0;i--)
		{
			ans=ans*E%p;
			ans=(ans+a[i])%p;
		}
		for(int i=1;i<n;i++)
			printf("%lld\n",ans);
	}
}
int main()
{
	open("loj6067");
	fft::init();
	init();
	scanf("%d%lld%lld%lld%lld",&n,&B,&C,&D,&E);
	for(int i=0;i<n;i++)
		a[i]=rd();
	if(!C)
		gao0::gao();
	else if(!B)
		gao1::gao();
	else
		gao2::gao();
	return 0;
}
posted @ 2018-06-24 16:26  ywwyww  阅读(493)  评论(0编辑  收藏  举报