【XSY2750】Mythological V 2-sat
题目描述
有一棵\(n\)个点的树,还有\(m\)个物品。
你要把每个物品放在树上的一个点上(两个物品可以放在同一个点)。
有\(q\)个限制:\(a,b\)两个物品在路上的最短路经过\(c\)。
要你构造一组合法的方案。
\(n,m\leq 250\)
题解
很容易想到2-sat。
但是把点看成"物品\(x\)放在\(y\)上"会找不到合法解。
所以要把点看成“物品\(x\)在以\(y\)为根的子树内”,这样根就是必须选的。
连边的话(下面只列出一半的边):\(x\rightarrow f_x,x\rightarrow !y\)(\(y\)是\(x\)的兄弟)(这些边可以弄一些前缀后缀的点优化)
和询问有关的:
1.\(a\neq b\):\((a,x)\rightarrow !(b,x)\)(\(x\)是\(c\)的儿子),\(!(a,c)\rightarrow (b,c)\)。
2.\(a=b\):\(!(a,c)\rightarrow(a,c)\),\((a,x)\rightarrow !(a,x)\)(\(x\)是\(c\)的儿子)。
点数为\(O(nm)\)
边数为\(O(nm^2)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
struct graph
{
int h[400010];
int v[40000010];
int t[40000010];
int n;
graph()
{
n=0;
memset(h,0,sizeof h);
}
void add(int x,int y)
{
n++;
v[n]=y;
t[n]=h[x];
h[x]=n;
}
};
graph g;
vector<int> t[260],t2;
int n,m,q;
int id(int x,int y)//x=物品,y=点
{
return (y-1)*m+x;
}
int cnt;
int pre[260],suf[260];
void add0(int k1,int x,int k2,int y)
{
g.add(id(k1,x)*2-1,id(k2,y)*2);
g.add(id(k2,y)*2-1,id(k1,x)*2);
}
void add4(int k1,int x,int k2,int y)
{
g.add(id(k1,x)*2,id(k2,y)*2-1);
g.add(id(k2,y)*2,id(k1,x)*2-1);
}
void add1(int k1,int x,int k2,int y)
{
g.add(id(k1,x)*2-1,id(k2,y)*2-1);
g.add(id(k2,y)*2,id(k1,x)*2);
}
void add2(int k,int x)
{
g.add(id(k,x)*2,id(k,x)*2-1);
}
void add3(int k,int x)
{
g.add(id(k,x)*2-1,id(k,x)*2);
}
int f[300];
int d[300];
void dfs(int x,int fa,int dep)
{
t2.clear();
f[x]=fa;
d[x]=dep;
for(auto v:t[x])
if(v!=fa)
t2.push_back(v);
t[x]=t2;
for(auto v:t[x])
dfs(v,x,dep+1);
}
int b[400010];
int e[400010];
int ti,tot,top;
int st[400010];
int dfn[400010];
int low[400010];
int c[300][300][300];
void dfs(int x)
{
low[x]=dfn[x]=++ti;
st[++top]=x;
b[x]=1;
for(int i=g.h[x];i;i=g.t[i])
{
if(b[g.v[i]]!=2)
{
if(!b[g.v[i]])
dfs(g.v[i]);
low[x]=min(low[x],low[g.v[i]]);
}
}
if(low[x]>=dfn[x])
{
int v;
tot++;
do
{
v=st[top--];
e[v]=tot;
b[v]=2;
}
while(v!=x);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
#endif
scanf("%d%d%d",&n,&m,&q);
int x,y,z;
for(int i=1;i<n;i++)
{
scanf("%d%d",&x,&y);
t[x].push_back(y);
t[y].push_back(x);
}
dfs(1,0,1);
cnt=n;
for(int i=1;i<=n;i++)
{
if(i!=1)
for(int k=1;k<=m;k++)
add1(k,i,k,f[i]);
int sz=t[i].size();
for(int j=0;j<sz;j++)
{
pre[j]=++cnt;
for(int k=1;k<=m;k++)
add1(k,t[i][j],k,pre[j]);
if(j)
for(int k=1;k<=m;k++)
add1(k,pre[j-1],k,pre[j]);
}
for(int j=sz-1;j>=0;j--)
{
suf[j]=++cnt;
for(int k=1;k<=m;k++)
add1(k,t[i][j],k,suf[j]);
if(j!=sz-1)
for(int k=1;k<=m;k++)
add1(k,suf[j+1],k,suf[j]);
}
for(int j=0;j<sz;j++)
{
if(j)
for(int k=1;k<=m;k++)
add0(k,t[i][j],k,pre[j-1]);
if(j!=sz-1)
for(int k=1;k<=m;k++)
add0(k,t[i][j],k,suf[j+1]);
}
}
for(int i=1;i<=m;i++)
add2(i,1);
memset(b,0,sizeof b);
for(int i=1;i<=q;i++)
{
scanf("%d%d%d",&x,&y,&z);
if(x>y)
swap(x,y);
if(c[x][y][z])
continue;
c[x][y][z]=1;
if(x==y)
{
add2(x,z);
for(auto v:t[z])
add3(x,v);
}
else
{
for(auto v:t[z])
add0(x,v,y,v);
add4(x,z,y,z);
}
}
ti=0;
tot=0;
top=0;
for(int i=1;i<=2*m*cnt;i++)
if(!b[i])
dfs(i);
for(int i=1;i<=m;i++)
{
int ans=1;
for(int j=1;j<=n;j++)
if(e[2*id(i,j)-1]<e[2*id(i,j)])
if(d[j]>d[ans])
ans=j;
printf("%d ",ans);
}
return 0;
}