【BZOJ1013】【JSOI2008】球形空间产生器 高斯消元

题目描述

  有一个\(n\)维空间中的球,告诉你球面上\(n+1\)个点的坐标,求球心的坐标。

  \(n\leq 10\)

题解

  设\(a_{i,j}\)为第\(i\)个点的第\(j\)维坐标,\(i=0\)代表球心。

  假设\(n=2\)

\[\begin{align} \sum_{i=1}^n{(a_{0,i}-a_{1,i})}^2&=\sum_{i=1}^n{(a_{0,i}-a_{2,i})}^2\\ \sum_{i=1}^na_{0,j}^2-2\sum_{i=1}^na_{0,i}a_{1,i}+\sum_{i=1}^na_{1,i}^2&=\sum_{i=1}^na_{0,j}^2-2\sum_{i=1}^na_{0,i}a_{2,i}+\sum_{i=1}^na_{2,i}^2\\ 2\sum_{i=1}^na_{0,i}a_{1,i}-\sum_{i=1}^na_{1,i}^2&=2\sum_{i=1}^na_{0,i}a_{2,i}-\sum_{i=1}^na_{2,i}^2\\ \sum_{i=1}^n2(a_{1,i}-a_{2,i})a_{0,i}-\sum_{i=1}^n(a_{2,i}^2-a_{1,i}^2)&=0 \end{align} \]

  一共给你了\(n+1\)个点,可以构造出\(n\)个方程,可以用高斯消元解出\(n\)个未知数\(a_{0,i},\ldots ,a_{0,n}\)

  时间复杂度:\(O(n^3)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
#include<functional>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
	if(a>b)
		swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
	char str[100];
	sprintf(str,"%s.in",s);
	freopen(str,"r",stdin);
	sprintf(str,"%s.out",s);
	freopen(str,"w",stdout);
#endif
}
int rd()
{
	int s=0,c;
	while((c=getchar())<'0'||c>'9');
	do
	{
		s=s*10+c-'0';
	}
	while((c=getchar())>='0'&&c<='9');
	return s;
}
int upmin(int &a,int b)
{
	if(b<a)
	{
		a=b;
		return 1;
	}
	return 0;
}
int upmax(int &a,int b)
{
	if(b>a)
	{
		a=b;
		return 1;
	}
	return 0;
}
double a[20][20];
double c[20][20];
int main()
{
	open("bzoj1013");
	int n;
	scanf("%d",&n);
	int i,j;
	for(i=1;i<=n+1;i++)
		for(j=1;j<=n;j++)
			scanf("%lf",&a[i][j]);
	for(i=1;i<=n;i++)
		for(j=1;j<=n+1;j++)
			c[i][j]=0;
	for(i=1;i<=n;i++)
		for(j=1;j<=n;j++)
		{
			c[i][j]+=2*(a[1][j]-a[i+1][j]);
			c[i][n+1]-=a[i+1][j]*a[i+1][j]-a[1][j]*a[1][j];
		}
	int k;
	double v;
	for(i=1;i<=n;i++)
	{
		for(j=i;j<=n;j++)
			if(fabs(c[j][i])>1e-9)
				break;
		if(j!=i)
			for(k=i;k<=n+1;k++)
				swap(c[i][k],c[j][k]);
		v=1/c[i][i];
		for(j=i;j<=n+1;j++)
			c[i][j]*=v;
		for(j=1;j<=n;j++)
			if(j!=i&&fabs(c[j][i])>1e-9)
			{
				v=c[j][i];
				for(k=i;k<=n+1;k++)
					c[j][k]-=c[i][k]*v;
			}
	}
	for(i=1;i<=n;i++)
	{
		printf("%.3f",c[i][n+1]);
		if(i!=n)
			putchar(' ');
	}
	return 0;
}
posted @ 2018-03-06 11:31  ywwyww  阅读(146)  评论(0编辑  收藏  举报