【GZOI2015】石子游戏 博弈论 SG函数
题目大意
有\(n\)堆石子,两个人可以轮流取石子。每次可以选择一堆石子,做出下列的其中一点操作:
1.移去整堆石子
2.设石子堆中有\(x\)个石子,取出\(y\)堆石子,其中\(1\leq y<x\)且\((x,y)=1\)
取出最后一颗石子的人胜利。问先手胜还是后手胜。
\(n\leq 100\),每堆石子个数\(a_i\leq {10}^6\)
题解
基础知识:SG函数。
令\(x\)为某堆石子的个数。
\(SG(i)=mex(SG(j)~~~~((i,j)=1)\)
先用暴力求一遍SG值,然后会发现:
当\(x\)为质数时,\(SG(x)=\)\(x\)是第几个质数\(+1\)。因为前面的质数都可以选,所以就是这个。
当\(x\)不是质数时,设\(y\)为\(x\)的最小质因子,则\(SG(x)=SG(y)\)。因为\(y\)之前的都可以选,\(y\)不能选,所以就是\(SG(y)\)。
然后直接线性筛计算答案。
时间复杂度:\(O(a+n)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
#include<functional>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
if(a>b)
swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
int rd()
{
int s=0,c;
while((c=getchar())<'0'||c>'9');
do
{
s=s*10+c-'0';
}
while((c=getchar())>='0'&&c<='9');
return s;
}
int upmin(int &a,int b)
{
if(b<a)
{
a=b;
return 1;
}
return 0;
}
int upmax(int &a,int b)
{
if(b>a)
{
a=b;
return 1;
}
return 0;
}
int gcd(int a,int b)
{
return b?gcd(b,a%b):a;
}
int sg[1000010];
int pri[100010];
int cnt;
int main()
{
sg[0]=0;
sg[1]=1;
int i,j;
for(i=2;i<=1000000;i++)
{
if(!sg[i])
{
pri[++cnt]=i;
sg[i]=cnt+1;
}
for(j=1;j<=cnt&&i*pri[j]<=1000000;j++)
{
sg[i*pri[j]]=sg[pri[j]];
if(i%pri[j]==0)
break;
}
}
int t;
scanf("%d",&t);
while(t--)
{
int n,x,s=0;
scanf("%d",&n);
for(i=1;i<=n;i++)
{
scanf("%d",&x);
s^=sg[x];
}
if(s)
printf("Alice\n");
else
printf("Bob\n");
}
return 0;
}