【BZOJ5020】【THUWC2017】在美妙的数学王国中畅游 LCT 泰勒展开
题目大意
给你一棵树,每个点有一个函数\(f(x)\)
- 正弦函数 \(\sin(ax+b) (a\in[0,1],b\in[0,\pi],a+b\in[0,\pi])\)
- 指数函数 \(e^{ax+b} (a\in[−1,1],b\in[−2,0],a+b\in[−2,0])\)
- 一次函数 \(ax+b (a\in[−1,1],b\in[0,1],a+b\in[0,1])\)
还有一些操作:
- 操作1:连接两个点(保证连接完后还是森林)
- 操作2:断开两个点之间的边
- 操作3:修改某一个点的函数
- 操作4:询问两个点路径上的所有函数的\(f(v)\)的和。
\(n\leq 100000,m\leq 200000,0\leq v\leq 1,0\leq f(v)\leq 1\)
题目描述
前面两个操作就是link和cut。
我们需要在每个点上维护这个函数,但这些都不是多项式函数。我们可以发现\(0\leq v\leq 1\),所以可以暴力维护这些函数在\(x=0\)处的泰勒展开式(就是生成函数)。我维护了前面\(15\)项。
\[\begin{align}
e^x&=\sum_{i=0}^\infty \frac{x^i}{i!}\\
\sin(x)&=\sum_{i=0}^\infty{(-1)}^i\frac{x^{2i+1}}{(2i+1)!}
\end{align}
\]
每个函数的\(x=av+b\),直接用二项式定理暴力展开就可以了。
时间复杂度:\(O(len\times m\log n)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
if(a>b)
swap(a,b);
}
void open(const char *s)
{
#ifdef DEBUG
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
const int len=15;
namespace lct
{
double v[100010][16];
double s[100010][16];
int a[100010][2];
int f[100010];
int r[100010];
void cp(int x)
{
memcpy(s[x],v[x],sizeof(double)*(len+1));
}
int root(int x)
{
return !f[x]||(a[f[x]][0]!=x&&a[f[x]][1]!=x);
}
void reverse(int x)
{
swap(a[x][0],a[x][1]);
r[x]^=1;
}
void push(int x)
{
if(r[x])
{
if(a[x][0])
reverse(a[x][0]);
if(a[x][1])
reverse(a[x][1]);
r[x]=0;
}
}
void mt(int x)
{
int i;
int ls=a[x][0];
int rs=a[x][1];
for(i=0;i<=len;i++)
s[x][i]=v[x][i]+s[ls][i]+s[rs][i];
}
void rotate(int x)
{
int p=f[x];
int q=f[p];
int ps=(x==a[p][1]);
int qs=(p==a[q][1]);
int ch=a[x][ps^1];
if(!root(p))
a[q][qs]=x;
a[x][ps^1]=p;
a[p][ps]=ch;
if(ch)
f[ch]=p;
f[p]=x;
f[x]=q;
mt(p);
mt(x);
}
void pushdown(int x)
{
if(!root(x))
pushdown(f[x]);
push(x);
}
void splay(int x)
{
pushdown(x);
while(!root(x))
{
int p=f[x];
if(!root(p))
{
int q=f[p];
if((x==a[p][1])==(p==a[q][1]))
rotate(p);
else
rotate(x);
}
rotate(x);
}
}
void access(int x)
{
int y=x,t=0;
while(x)
{
splay(x);
a[x][1]=t;
mt(x);
t=x;
x=f[x];
}
splay(y);
}
void change(int x)
{
access(x);
reverse(x);
}
void link(int x,int y)
{
change(x);
f[x]=y;
splay(x);
}
void cut(int x,int y)
{
change(x);
access(y);
f[a[y][0]]=0;
a[y][0]=0;
mt(y);
}
int find(int x)
{
access(x);
while(a[x][0])
x=a[x][0];
splay(x);
return x;
}
double query(int x,int y,double v)
{
double res=0;
change(x);
access(y);
int i;
for(i=len;i>=0;i--)
{
res*=v;
res+=s[y][i];
}
return res;
}
}
double c[16][16];
double fac[16];
void init()
{
int i,j;
fac[0]=1;
for(i=1;i<=len;i++)
fac[i]=fac[i-1]*i;
for(i=0;i<=len;i++)
{
c[i][0]=1;
for(j=1;j<=i;j++)
c[i][j]=c[i-1][j-1]+c[i-1][j];
}
}
inline double get(int t,int x)
{
if(t==1)
{
if(x%4==1)
return 1/fac[x];
else if(x%4==3)
return -1/fac[x];
return 0;
}
else if(t==2)
{
return 1/fac[x];
}
else
{
if(x==1)
return 1;
return 0;
}
}
void change(double *s,int t,double a,double b)
{
static double pa[16],pb[16];
int i,j;
for(i=0;i<=len;i++)
s[i]=0;
pa[0]=pb[0]=1;
for(i=1;i<=len;i++)
{
pa[i]=pa[i-1]*a;
pb[i]=pb[i-1]*b;
}
double v;
if(t==1)
{
for(i=1;i<=len;i+=2)
{
v=get(t,i);
for(j=0;j<=i;j++)
//(ax+b)^t=C(t,i)a^ib^(t-i)
s[j]+=v*c[i][j]*pa[j]*pb[i-j];
}
}
else if(t==2)
{
for(i=0;i<=len;i++)
{
v=get(t,i);
for(j=0;j<=i;j++)
//(ax+b)^t=C(t,i)a^ib^(t-i)
s[j]+=v*c[i][j]*pa[j]*pb[i-j];
}
}
else
{
s[0]=b;
s[1]=a;
}
}
int main()
{
open("bzoj5020");
init();
int n,m;
char type[100];
scanf("%d%d%s",&n,&m,type);
double a,b,v;
int x,y,t;
int i;
for(i=1;i<=n;i++)
{
scanf("%d%lf%lf",&t,&a,&b);
change(lct::v[i],t,a,b);
lct::cp(i);
}
for(i=1;i<=m;i++)
{
scanf("%s",type);
if(type[0]=='a')
{
scanf("%d%d",&x,&y);
x++;
y++;
lct::link(x,y);
}
else if(type[0]=='d')
{
scanf("%d%d",&x,&y);
x++;
y++;
lct::cut(x,y);
}
else if(type[0]=='m')
{
scanf("%d%d%lf%lf",&x,&t,&a,&b);
x++;
lct::access(x);
change(lct::v[x],t,a,b);
lct::cp(x);
}
else
{
scanf("%d%d%lf",&x,&y,&v);
x++;
y++;
if(lct::find(x)!=lct::find(y))
{
printf("unreachable\n");
continue;
}
double ans=lct::query(x,y,v);
printf("%.8le\n",ans);
}
}
return 0;
}