【BZOJ2208】【JSOI2010】连通数 传递闭包
题目描述
定义一个图的连通度为图中可达顶点对的数目。给你一个\(n\)个点的有向图,问你这个图的连通度。
\(n\leq 2000,m\leq n^2\)
题解
一个很简单的做法就是传递闭包:像floyd算法一样处理两个点之间是否可达。
\[f_{i,j}|=f_{i,k}\&f_{k,j}
\]
但是这是\(O(n^3)\)的。
观察到用到的运算都是位运算,那就用bitset加速一下就行了。
时间复杂度:\(O(\frac{n^3}{64})\)(还是\(O(n^3)\))
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
#include<functional>
#include<bitset>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int,int> pii;
typedef pair<ll,ll> pll;
void sort(int &a,int &b)
{
if(a>b)
swap(a,b);
}
void open(const char *s)
{
#ifndef ONLINE_JUDGE
char str[100];
sprintf(str,"%s.in",s);
freopen(str,"r",stdin);
sprintf(str,"%s.out",s);
freopen(str,"w",stdout);
#endif
}
int rd()
{
int s=0,c;
while((c=getchar())<'0'||c>'9');
do
{
s=s*10+c-'0';
}
while((c=getchar())>='0'&&c<='9');
return s;
}
int upmin(int &a,int b)
{
if(b<a)
{
a=b;
return 1;
}
return 0;
}
int upmax(int &a,int b)
{
if(b>a)
{
a=b;
return 1;
}
return 0;
}
bitset<2001> f[2010];
char s[2010];
int main()
{
int n;
int i,j;
scanf("%d",&n);
for(i=1;i<=n;i++)
{
scanf("%s",s+1);
for(j=1;j<=n;j++)
if(s[j]-'0')
f[i].set(j);
f[i].set(i);
}
for(j=1;j<=n;j++)
for(i=1;i<=n;i++)
if(i!=j&&f[i][j])
f[i]|=f[j];
int s=0;
for(i=1;i<=n;i++)
s+=f[i].count();
printf("%d\n",s);
return 0;
}