【XSY1580】Y队列 容斥
题目大意
给你\(n,r\),求第\(n\)个不能被表示为\(a^b(2\leq b\leq r)\)的数
\(n\leq 2\times {10}^{18},r\leq 62\)
题解
我们考虑二分,求\(\leq m\)的不能被表示为\(a^b\)的数\(f(m)\)
我们先忽略\(1\)
我们钦定能被表示为\(a^2,a^3,a^5\)等\(b\)为质数的数,贡献为\(\lfloor\sqrt[2]{m}\rfloor-1,\lfloor\sqrt[3]{m}\rfloor-1\cdots\),这样也会包含当\(b\)为合数时的情况,例如\(a^4={(a^2)}^2\)
但我们算多了,例如\(a^3=b^2=c^6\),所以我们要减掉\(b\)为两个不同的质数的积的情况,即\(\lfloor\sqrt[6]{m}\rfloor-1,\lfloor\sqrt[10]{m}-1\rfloor\cdots\)
然后加上\(b\)为三个不同的质数的积的情况,减掉\(b\)为四个不同的质数的积的情况……
我们发现\(b=x\)时容斥系数为\(\mu(x)\)
当\(b>62\)时\(\lfloor\sqrt[b]{m}\rfloor=1\),所以不用继续往下算了
还有,开\(n\)次根号可以用pow,不过要传long double参数进去,不然就会炸精度。
但是这样子还会tle,因为有\(30000\)组数据
我们发现\(f(x)\approx\sqrt{x}\)
我们计算出\(f(n)\),然后每次把\(n\)加上\(n-f(n)\),可以很快得到答案
时间复杂度:\(O(???)\)
反正能过且常数巨大就对了
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
#include<cmath>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
typedef long double ld;
int p[100];
int u[100];
int b[100];
int mx[100];
int cnt;
ll n;
int k;
ll fp(ll a,ll b)
{
ll s=1;
while(b)
{
if(b&1)
s=s*a;
a=a*a;
b>>=1;
}
return s;
}
ll calc(ll n,ll x)
{
ll s=floor(ld(pow(ld(n),ld(1)/x)));
return s;
}
ll count(ll x)
{
int i;
ll s=0;
ll nw;
for(i=1;i<=62;i++)
if(mx[i]<=k&&u[i])
{
nw=calc(x,i)-1;
if(!nw)
break;
s+=u[i]*nw;
}
return s;
}
void solve()
{
scanf("%lld%d",&n,&k);
ll t=n;
ll s=count(t);
while(1)
{
t+=n-s;
s=count(t);
if(s==n)
break;
}
printf("%lld\n",t);
}
int main()
{
int i,j;
cnt=0;
memset(b,0,sizeof b);
u[1]=1;
mx[1]=1;
for(i=2;i<=62;i++)
{
if(!b[i])
{
p[++cnt]=i;
mx[i]=i;
u[i]=-1;
}
for(j=1;j<=cnt&&i*p[j]<=62;j++)
{
b[i*p[j]]=1;
mx[i*p[j]]=mx[i];
if(i%p[j]==0)
{
u[i*p[j]]=0;
break;
}
u[i*p[j]]=-u[i];
}
}
int t;
scanf("%d",&t);
while(t--)
solve();
return 0;
}