【BZOJ1426】收集邮票 期望DP

题目大意

  有\(n\)种不同的邮票,皮皮想收集所有种类的邮票。唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是\(n\)种邮票中的哪一种是等概率的,概率均为\(\frac{1}{n}\)。但是由于凡凡也很喜欢邮票,所以皮皮购买第\(k\)张邮票(注意是第\(k\)张而不是第\(k\)种)需要支付\(k\)元钱。现在皮皮手中没有邮票,皮皮想知道自己得到所有种类的邮票需要花费的钱数目的期望。

  \(n\leq 10000\)

题外话

  如果买第\(k\)种需要\(k\)元钱要怎么做?

  已经买了\(i\)张,买到下一张需要的期望钱数是\(\frac{n}{n-i}\times\frac{n+1}{2}\)

  所以总的代价是

\[\sum_{i=0}^{n-1}\frac{n(n+1)}{2(n-i)}=\frac{n(n+1)}{2}\sum_{i=1}^{n}\frac{1}{i} \]

  可惜这题没那么简单。

题解

  设\(p(x,i)\)为已经买了\(i\)个物品,通过\(x\)次购买买完剩下的物品的概率

  设\(g_i\)为已经买到了\(i\)个物品,买完所有物品的期望次数

\[g_i=g_{i+1}+\frac{n}{n-i} \]

  下一次买到想要的物品的概率为\(\frac{n-i}{n}\),取倒数就是期望

  还有一条式子

\[g_i=\sum_{x=1}^\infty x\times p(x,i) \]

  买\(x\)次成功的概率乘以\(x\)

  设\(f_{i,j}\)为已经买到了\(i\)个物品,之间买过\(j\)次,买完所有物品的花费

  有一个递推式

\[f_{i,j}=f_{i,j+1}\times\frac{i}{n}+f_{i+1,j+1}\times\frac{n-i}{n}+(j+1) \]

\[\begin{align} f_{i,j}&=\sum_{x=1}^\infty ((j+1)+(j+2)+\cdots(j+x))\times p(x,i)\\ &=\sum_{x=1}^\infty \frac{x(x+2j+1)}{2}\times p(x,i) \end{align} \]

  作差得

\[f_{i,j+1}-f_{i,j}=\sum_{x=1}^\infty x\times p(x,i)=g_i\\ f_{i,j+1}=f_{i,j}+g_i\\ \]

  代入到递推式中得

\[\begin{align} f_{i,j}&=(f_{i,j}+g_i)\times\frac{i}{n}+(f_{i+1,j}+g_{i+1})\times\frac{n-i}{n}+(j+1)\\ f_{i,j}&=\frac{i}{n}f_{i,j}+\frac{i}{n}g_{i}+\frac{n-i}{n}f_{i+1,j}+\frac{n-i}{n}g_{i+1}+(j+1)\\ f_{i,j}&=\frac{i}{n-i}g_{i}+f_{i+1,j}+g_{i+1}+\frac{n}{n-i}(j+1) \end{align} \]

  可以发现\(f_{i,j}\)只和\(j\)\(f_{i+1,j}\)\(g_{i}\)\(g_{i+1}\)有关。因为我们只要求\(f_{0,0}\),所以可以把\(j\)那一维删去

\[f_{i}=\frac{i}{n-i}g_i+f_{i+1}+g_{i+1}+\frac{n}{n-i} \]

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cstdlib>
#include<ctime>
#include<utility>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
double g[100010];
double f[100010];
int main()
{
	int n;
	scanf("%d",&n);
	int i;
	g[n]=0;
	for(i=n-1;i>=0;i--)
		g[i]=g[i+1]+double(n)/(n-i);
	f[n]=0;
	for(i=n-1;i>=0;i--)
		f[i]=f[i+1]+double(i)/(n-i)*g[i]+g[i+1]+double(n)/(n-i);
	printf("%.2lf\n",f[0]);
	return 0;
}
posted @ 2018-03-05 20:11  ywwyww  阅读(269)  评论(0编辑  收藏  举报