Keras 模型加载
完整代码
from operator import le import numpy as np from keras.datasets import mnist from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense,Dropout,Convolution2D,MaxPooling2D,Flatten from keras.optimizers import SGD,Adam from keras.regularizers import l2 from keras.models import load_model # https://s3.amazonaws.com/img-datasets/mnist.npz # 1、加载数据 (x_train,y_train),(x_test,y_test) = mnist.load_data("./data") # 2、数据预处理 # 将 (60000,28,28) 转为 (60000,28,28,1);其中 -1 表示自动推断 ; 除以255.0进行归一化 x_train = x_train.reshape(-1,28,28,1)/255.0 # (60000, 784) x_test = x_test.reshape(-1,28,28,1)/255.0 # 转为one-hot 编码 y_train = np_utils.to_categorical(y_train,num_classes=10) y_test = np_utils.to_categorical(y_test,num_classes=10) # 3、加载模型 model = load_model(r'model.h5') # 4、评估模型 loss, accuracy = model.evaluate(x_test,y_test) print('\ntest loss={},accuracy={}'.format(loss,accuracy)) loss, accuracy = model.evaluate(x_train,y_train) print('\ntrain loss={},accuracy={}'.format(loss,accuracy)) # 5、保存模型 model.save('model.h5')
本文来自博客园,作者:小白啊小白,Fighting,转载请注明原文链接:https://www.cnblogs.com/ywjfx/p/16662165.html