随笔分类 -  pandas

摘要:1、数据分析步骤 2、案例 阅读全文
posted @ 2019-05-10 11:28 小白啊小白,Fighting 阅读(3185) 评论(0) 推荐(0) 编辑
摘要:1、data_range生成时间范围 b)将时间字符串转为时间序列 使用pandas提供的方法把时间字符串转化为时间序列 df["timeStamp"] = pd.to_datetime(df["timeStamp"],format=""),其中format参数大部分情况下可以不用写 c)DataF 阅读全文
posted @ 2019-05-10 09:38 小白啊小白,Fighting 阅读(6606) 评论(2) 推荐(1) 编辑
摘要:1、pandas对缺失数据的处理 判断数据是否为NaN:pd.isnull(df),pd.notnull(df) 处理方式1:删除NaN所在的行列dropna (axis=0, how='any', inplace=False) 处理方式2:填充数据,t.fillna(t.mean()),t.fia 阅读全文
posted @ 2019-05-09 16:29 小白啊小白,Fighting 阅读(7505) 评论(0) 推荐(0) 编辑
摘要:知识点 1、DataFrame创建,可以通过index和columns指定索引名称 2、DataFrame基础属性和整体情况查询 3、通过pd.sort_values(by="Count_AnimalName",ascending=False).head(5)排序获取次数最高的排名数据 4、切片与索 阅读全文
posted @ 2019-05-09 10:29 小白啊小白,Fighting 阅读(14728) 评论(0) 推荐(0) 编辑
摘要:知识点 1、Series创建 2、Series索引与切片 a)索引:一个的时候直接传入序号或者index,多个的时候传入序号或者index的列表 b)切片:直接传入start end或者步长即可 3、Series其他属性与方法 4、Series读取外部数据 阅读全文
posted @ 2019-05-09 09:47 小白啊小白,Fighting 阅读(1160) 评论(3) 推荐(0) 编辑

点击右上角即可分享
微信分享提示