tensorflow使用horovod进行多gpu训练
tensorflow使用horovod多gpu训练
要使用Horovod,在程序中添加以下内容。此示例使用TensorFlow。
-
运行
hvd.init()
-
使用固定服务器GPU,以供此过程使用
config.gpu_options.visible_device_list
通过每个进程一个GPU的典型设置,您可以将其设置为local rank。在这种情况下,服务器上的第一个进程将被分配第一GPU,第二个进程将被分配第二GPU,依此类推。
-
通过工人人数来衡量学习率
同步分布式培训中的有效批处理规模是根据工人人数来衡量的。学习率的提高弥补了批量大小的增加。
-
将优化器包装在中
hvd.DistributedOptimizer
分布式优化器将梯度计算委派给原始优化器,使用allreduce或allgather对梯度求平均,然后应用这些平均梯度。
-
添加
hvd.BroadcastGlobalVariablesHook(0)
到播放初始变量状态从0级到所有其他进程当使用随机权重开始训练或从检查点恢复训练时,这是确保所有工人进行一致初始化的必要步骤。另外,如果您不使用
MonitoredTrainingSession
,则可以hvd.broadcast_global_variables
在初始化全局变量之后执行op。
-
修改您的代码以仅在工作程序0上保存检查点,以防止其他工作程序破坏它们
通过传递
checkpoint_dir=None
给tf.train.MonitoredTrainingSession
if 来完成此操作。hvd.rank() != 0
简单示例代码
1 import tensorflow as tf 2 import horovod.tensorflow as hvd 3 4 5 # Initialize Horovod 6 hvd.init() 7 8 # Pin GPU to be used to process local rank (one GPU per process) 9 config = tf.ConfigProto() 10 config.gpu_options.visible_device_list = str(hvd.local_rank()) 11 12 # Build model... 13 loss = ... 14 opt = tf.train.AdagradOptimizer(0.01 * hvd.size()) 15 16 # Add Horovod Distributed Optimizer 17 opt = hvd.DistributedOptimizer(opt) 18 19 # Add hook to broadcast variables from rank 0 to all other processes during 20 # initialization. 21 hooks = [hvd.BroadcastGlobalVariablesHook(0)] 22 23 # Make training operation 24 train_op = opt.minimize(loss) 25 26 # Save checkpoints only on worker 0 to prevent other workers from corrupting them. 27 checkpoint_dir = '/tmp/train_logs' if hvd.rank() == 0 else None 28 29 # The MonitoredTrainingSession takes care of session initialization, 30 # restoring from a checkpoint, saving to a checkpoint, and closing when done 31 # or an error occurs. 32 with tf.train.MonitoredTrainingSession(checkpoint_dir=checkpoint_dir, 33 config=config, 34 hooks=hooks) as mon_sess: 35 while not mon_sess.should_stop(): 36 # Perform synchronous training. 37 mon_sess.run(train_op)
凤舞九天