U-net网络实现医学图像分割以及遥感图像分割源代码

U-net网络主要思路是源于FCN,采用全卷积网络,对图像进行逐像素分类,能在图像分割领域达到不错的效果。

因其网络结构类似于U型,所以以此命名,可以由其架构清晰的看出,其构成是由左端的卷积压缩层,以及右端的转置卷积放大层组成;

左右两端之间还有联系,通过灰色箭头所指,右端在进行转置卷积操作的时候,会拼接左端前几次卷积后的结果,这样可以保证得到

更多的信息。

在网络的末端得到两张feature map之后还需要通过softmax函数得到概率图,整个网络输出的是类别数量的特征图,最后得到的是类别的概率图,针对每个像素点给出其属于哪个类别的概率。

Unet网络的结构提出主要是为了使用在医学图像分割领域,它与fcn相比,有以下有优点:1.多尺度  2.能适应超大图像的

输入。

unet的卷积过程,是从高分辨率(浅层特征)到低分辨率(深层特征)的过程。

unet的特点就是通过反卷积过程中的拼接,使得浅层特征和深层特征结合起来。对于医学图像来说,unet能用深层特征用于定位,浅层特征用于精确分割,所以unet常见于很多图像分割任务。

 

 

其在Keras实现的部分代码解析如下:

  1 from model import *
  2 from data import *#导入这两个文件中的所有函数
  3  
  4 #os.environ[“CUDA_VISIBLE_DEVICES”] = “0”
  5  
  6  
  7 data_gen_args = dict(rotation_range=0.2,
  8                     width_shift_range=0.05,
  9                     height_shift_range=0.05,
 10                     shear_range=0.05,
 11                     zoom_range=0.05,
 12                     horizontal_flip=True,
 13                     fill_mode=‘nearest’)#数据增强时的变换方式的字典
 14 myGene = trainGenerator(2,‘data/membrane/train’,‘image’,‘label’,data_gen_args,save_to_dir = None)
 15 #得到一个生成器,以batch=2的速率无限生成增强后的数据
 16  
 17 model = unet()
 18 model_checkpoint = ModelCheckpoint(‘unet_membrane.hdf5’, monitor=‘loss’,verbose=1, save_best_only=True)
 19 #回调函数,第一个是保存模型路径,第二个是检测的值,检测Loss是使它最小,第三个是只保存在验证集上性能最好的模型
 20  
 21 model.fit_generator(myGene,steps_per_epoch=300,epochs=1,callbacks=[model_checkpoint])
 22 #steps_per_epoch指的是每个epoch有多少个batch_size,也就是训练集总样本数除以batch_size的值
 23 #上面一行是利用生成器进行batch_size数量的训练,样本和标签通过myGene传入
 24 testGene = testGenerator(“data/membrane/test”)
 25 results = model.predict_generator(testGene,30,verbose=1)
 26 #30是step,steps: 在停止之前,来自 generator 的总步数 (样本批次)。 可选参数 Sequence:如果未指定,将使用len(generator) 作为步数。
 27 #上面的返回值是:预测值的 Numpy 数组。
 28 saveResult(“data/membrane/test”,results)#保存结果
 29 1
 30 data.py文件:
 31 
 32 from __future__ import print_function
 33 from keras.preprocessing.image import ImageDataGenerator
 34 import numpy as np 
 35 import os
 36 import glob
 37 import skimage.io as io
 38 import skimage.transform as trans
 39  
 40 Sky = [128,128,128]
 41 Building = [128,0,0]
 42 Pole = [192,192,128]
 43 Road = [128,64,128]
 44 Pavement = [60,40,222]
 45 Tree = [128,128,0]
 46 SignSymbol = [192,128,128]
 47 Fence = [64,64,128]
 48 Car = [64,0,128]
 49 Pedestrian = [64,64,0]
 50 Bicyclist = [0,128,192]
 51 Unlabelled = [0,0,0]
 52  
 53 COLOR_DICT = np.array([Sky, Building, Pole, Road, Pavement,
 54                           Tree, SignSymbol, Fence, Car, Pedestrian, Bicyclist, Unlabelled])
 55  
 56  
 57 def adjustData(img,mask,flag_multi_class,num_class):
 58     if(flag_multi_class):#此程序中不是多类情况,所以不考虑这个
 59         img = img / 255
 60         mask = mask[:,:,:,0] if(len(mask.shape) == 4) else mask[:,:,0]
 61 #if else的简洁写法,一行表达式,为真时放在前面,不明白mask.shape=4的情况是什么,由于有batch_size,所以mask就有3维[batch_size,wigth,heigh],估计mask[:,:,0]是写错了,应该写成[0,:,:],这样可以得到一片图片,
 62         new_mask = np.zeros(mask.shape + (num_class,))
 63 #np.zeros里面是shape元组,此目的是将数据厚度扩展到num_class层,以在层的方向实现one-hot结构
 64  
 65         for i in range(num_class):
 66             #for one pixel in the image, find the class in mask and convert it into one-hot vector
 67             #index = np.where(mask == i)
 68             #index_mask = (index[0],index[1],index[2],np.zeros(len(index[0]),dtype = np.int64) + i) if (len(mask.shape) == 4) else (index[0],index[1],np.zeros(len(index[0]),dtype = np.int64) + i)
 69             #new_mask[index_mask] = 1
 70             new_mask[mask == i,i] = 1#将平面的mask的每类,都单独变成一层,
 71         new_mask = np.reshape(new_mask,(new_mask.shape[0],new_mask.shape[1]*new_mask.shape[2],new_mask.shape[3])) if flag_multi_class else np.reshape(new_mask,(new_mask.shape[0]*new_mask.shape[1],new_mask.shape[2]))
 72         mask = new_mask
 73     elif(np.max(img) > 1):
 74         img = img / 255
 75         mask = mask /255
 76         mask[mask > 0.5] = 1
 77         mask[mask <= 0.5] = 0
 78     return (img,mask)
 79 #上面这个函数主要是对训练集的数据和标签的像素值进行归一化
 80  
 81  
 82 def trainGenerator(batch_size,train_path,image_folder,mask_folder,aug_dict,image_color_mode = "grayscale",
 83                     mask_color_mode = "grayscale",image_save_prefix  = "image",mask_save_prefix  = "mask",
 84                     flag_multi_class = False,num_class = 2,save_to_dir = None,target_size = (256,256),seed = 1):
 85     '''
 86     can generate image and mask at the same time
 87     use the same seed for image_datagen and mask_datagen to ensure the transformation for image and mask is the same
 88     if you want to visualize the results of generator, set save_to_dir = "your path"
 89     '''
 90     image_datagen = ImageDataGenerator(**aug_dict)
 91     mask_datagen = ImageDataGenerator(**aug_dict)
 92     image_generator = image_datagen.flow_from_directory(#https://blog.csdn.net/nima1994/article/details/80626239
 93         train_path,#训练数据文件夹路径
 94         classes = [image_folder],#类别文件夹,对哪一个类进行增强
 95         class_mode = None,#不返回标签
 96         color_mode = image_color_mode,#灰度,单通道模式
 97         target_size = target_size,#转换后的目标图片大小
 98         batch_size = batch_size,#每次产生的(进行转换的)图片张数
 99         save_to_dir = save_to_dir,#保存的图片路径
100         save_prefix  = image_save_prefix,#生成图片的前缀,仅当提供save_to_dir时有效
101         seed = seed)
102     mask_generator = mask_datagen.flow_from_directory(
103         train_path,
104         classes = [mask_folder],
105         class_mode = None,
106         color_mode = mask_color_mode,
107         target_size = target_size,
108         batch_size = batch_size,
109         save_to_dir = save_to_dir,
110         save_prefix  = mask_save_prefix,
111         seed = seed)
112     train_generator = zip(image_generator, mask_generator)#组合成一个生成器
113     for (img,mask) in train_generator:
114 #由于batch是2,所以一次返回两张,即img是一个2张灰度图片的数组,[2,256,256]
115         img,mask = adjustData(img,mask,flag_multi_class,num_class)#返回的img依旧是[2,256,256]
116         yield (img,mask)
117 #每次分别产出两张图片和标签,不懂yield的请看https://blog.csdn.net/mieleizhi0522/article/details/82142856
118  # yield相当于生成器
119 #上面这个函数主要是产生一个数据增强的图片生成器,方便后面使用这个生成器不断生成图片
120  
121  
122 def testGenerator(test_path,num_image = 30,target_size = (256,256),flag_multi_class = False,as_gray = True):
123     for i in range(num_image):
124         img = io.imread(os.path.join(test_path,"%d.png"%i),as_gray = as_gray)
125         img = img / 255
126         img = trans.resize(img,target_size)
127         img = np.reshape(img,img.shape+(1,)) if (not flag_multi_class) else img
128         img = np.reshape(img,(1,)+img.shape)
129 #将测试图片扩展一个维度,与训练时的输入[2,256,256]保持一致
130         yield img
131  
132 #上面这个函数主要是对测试图片进行规范,使其尺寸和维度上和训练图片保持一致
133  
134 def geneTrainNpy(image_path,mask_path,flag_multi_class = False,num_class = 2,image_prefix = "image",mask_prefix = "mask",image_as_gray = True,mask_as_gray = True):
135     image_name_arr = glob.glob(os.path.join(image_path,"%s*.png"%image_prefix))
136 #相当于文件搜索,搜索某路径下与字符匹配的文件https://blog.csdn.net/u010472607/article/details/76857493/
137     image_arr = []
138     mask_arr = []
139     for index,item in enumerate(image_name_arr):#enumerate是枚举,输出[(0,item0),(1,item1),(2,item2)]
140         img = io.imread(item,as_gray = image_as_gray)
141         img = np.reshape(img,img.shape + (1,)) if image_as_gray else img
142         mask = io.imread(item.replace(image_path,mask_path).replace(image_prefix,mask_prefix),as_gray = mask_as_gray)
143 #重新在mask_path文件夹下搜索带有mask字符的图片(标签图片)
144         mask = np.reshape(mask,mask.shape + (1,)) if mask_as_gray else mask
145         img,mask = adjustData(img,mask,flag_multi_class,num_class)
146         image_arr.append(img)
147         mask_arr.append(mask)
148     image_arr = np.array(image_arr)
149     mask_arr = np.array(mask_arr)#转换成array
150     return image_arr,mask_arr
151 #该函数主要是分别在训练集文件夹下和标签文件夹下搜索图片,然后扩展一个维度后以array的形式返回,是为了在没用数据增强时的读取文件夹内自带的数据
152  
153  
154 def labelVisualize(num_class,color_dict,img):
155     img = img[:,:,0] if len(img.shape) == 3 else img
156     img_out = np.zeros(img.shape + (3,))
157 #变成RGB空间,因为其他颜色只能再RGB空间才会显示
158     for i in range(num_class):
159         img_out[img == i,:] = color_dict[i]
160 #为不同类别涂上不同的颜色,color_dict[i]是与类别数有关的颜色,img_out[img == i,:]是img_out在img中等于i类的位置上的点
161     return img_out / 255
162  
163 #上面函数是给出测试后的输出之后,为输出涂上不同的颜色,多类情况下才起作用,两类的话无用
164  
165 def saveResult(save_path,npyfile,flag_multi_class = False,num_class = 2):
166     for i,item in enumerate(npyfile):
167         img = labelVisualize(num_class,COLOR_DICT,item) if flag_multi_class else item[:,:,0]
168 #多类的话就图成彩色,非多类(两类)的话就是黑白色
169         io.imsave(os.path.join(save_path,"%d_predict.png"%i),img)19
194 #下面是model.py:
195 
196  
197 
198 import numpy as np 
199 import os
200 import skimage.io as io
201 import skimage.transform as trans
202 import numpy as np
203 from keras.models import *
204 from keras.layers import *
205 from keras.optimizers import *
206 from keras.callbacks import ModelCheckpoint, LearningRateScheduler
207 from keras import backend as keras
208  
209  
210 def unet(pretrained_weights = None,input_size = (256,256,1)):
211     inputs = Input(input_size)
212     conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs)
213     conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1)
214     pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
215     conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1)
216     conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2)
217     pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
218     conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2)
219     conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3)
220     pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
221     conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3)
222     conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4)
223     drop4 = Dropout(0.5)(conv4)
224     pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)
225  
226     conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4)
227     conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5)
228     drop5 = Dropout(0.5)(conv5)
229  
230     up6 = Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(drop5))#上采样之后再进行卷积,相当于转置卷积操作!
231     merge6 = concatenate([drop4,up6],axis=3)
232     conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6)
233     conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6)
234  
235     up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv6))
236     merge7 = concatenate([conv3,up7],axis = 3)
237     conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7)
238     conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7)
239  
240     up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv7))
241     merge8 = concatenate([conv2,up8],axis = 3)
242     conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8)
243     conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8)
244  
245     up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv8))
246     merge9 = concatenate([conv1,up9],axis = 3)
247     conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9)
248     conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
249     conv9 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
250     conv10 = Conv2D(1, 1, activation = 'sigmoid')(conv9)#我怀疑这个sigmoid激活函数是多余的,因为在后面的loss中用到的就是二进制交叉熵,包含了sigmoid
251  
252     model = Model(input = inputs, output = conv10)
253  
254     model.compile(optimizer = Adam(lr = 1e-4), loss = 'binary_crossentropy', metrics = ['accuracy'])#模型执行之前必须要编译https://keras-cn.readthedocs.io/en/latest/getting_started/sequential_model/
255     #利用二进制交叉熵,也就是sigmoid交叉熵,metrics一般选用准确率,它会使准确率往高处发展
256     #model.summary()
257  
258     if(pretrained_weights):
259      model.load_weights(pretrained_weights)
260  
261     return model
262  
263  

 

posted @ 2019-02-28 10:58  you-wh  阅读(11174)  评论(7编辑  收藏  举报
Fork me on GitHub