The 18th Zhejiang Provincial Collegiate Programming Contest

The 18th Zhejiang Provincial Collegiate Programming Contest

GYM链接 https://codeforces.com/gym/103055

F

题意:

给定两个整数\(n\)\(m\),有两种操作:

  1. \(n\geq 2\)时,将\(n\)的值减少\(1\)
  2. \(m\)的值增加\(1\)

求最小操作数,使得\(n|m\)

思路:

显然,当\(n\geq m\)时答案为\(n - m\), 下面我们来讨论当\(n < m\)时的情况:
我们假设当取得答案时的\(n\)的值为\(x\),对于此情况下,要使满足题意的\(m\)的值为\(x\times \lceil \frac {m} {x} \rceil\).
下面我们先来证明这个结论:
记此时的\(m\)\(m_0\).
\(\because\) \(m\)%\(x\neq0\).
\(\therefore\) \(m = x\times q + c.(c < x)\) \(\Rightarrow q = \frac{m - c}{x}.\)
显然 \(m_0 = x \times(q + 1) = x \times (\frac {m - c}{x} + 1) = x \times (\frac{m - c + x}{x})\).
\(\because\) \(c < x\).
\(\therefore\) \(\frac{m - c + x}{x} = \lceil\)\(\frac{m}{x}\rceil\).
\(\therefore\) $m_0 = x \times $ \(\lceil\)\(\frac{m}{x}\rceil\).
所以对于给定的\(x\)我们的最终答案$ans = x \times $ \(\lceil\)\(\frac{m}{x}\rceil - m + n - x\),显然我们只要考虑 \(x \times \lceil \frac mx \rceil - x\).
那么问题就变成了求 \(f(x)_{min} = x \times \lceil \frac mx \rceil - x.(1 \leq x \leq n)\)
我们发现对于这个式子,我们除了从\(1\)\(n\)去枚举,我们别无他法,但这显然时间复杂度较高,我们是不可以接受的,所以我们要继续化简它。
\(f(x) = x \times \lceil \frac mx \rceil - x = x \times \lfloor \frac{m + x -1}{x} \rfloor - x = x \times(\lfloor\frac{m + x -1 }{x} \rfloor - 1) = x \times(\lfloor\frac{m + x - x - 1}{x} \rfloor)= x \times \lfloor \frac {m-1}{x} \rfloor\)
到了这里,我们终于看到了一个熟悉的式子,上面这个式子我们可以使用整除分块来解决。
下面我们再来解释一下如何解决上面这个式子:
我们先忽略对\(m\)的减\(1\),我们很容易可以发现,对于固定的\(m\)和任意的\(x\),有相当连续一段的\(x\)对于\(\lfloor \frac {m }{x}\rfloor\)的值是一样的,我们把值相同的所有连续的\(x\)切割成一段,本题让我们求的是最小值,那我们只要枚举每一段的第一个数取最小值就可以了,那么究竟每一段右端是多少呢?
对于\(\forall x(x\leq m)\),我们要找到一个最大的\(j\),使得\(\lfloor \frac {m}{x}\rfloor\) = \(\lfloor \frac {m}{j}\rfloor\).
我们设\(k = \lfloor \frac {m}{x}\rfloor\),那么:
\(\lfloor \frac {m}{j}\rfloor = k \Leftrightarrow k \leq \frac mj < k + 1 \Leftrightarrow \frac {1}{k + 1} < \frac jm \leq \frac 1k \Leftrightarrow \frac{m}{k + 1} < j \leq \frac mk\),又因为\(j\)是整数,所以\(j_{max} = \lfloor \frac mk \rfloor = \lfloor \frac{m}{\lfloor \frac m x\rfloor} \rfloor\).
至此,我们终于找到了这个区间的右端。所以我们可以在\(O(\sqrt m)\) 的时间内枚举完成.

代码:

#include<bits/stdc++.h> 
#define endl '\n'
using namespace std;
typedef long long ll;
typedef long double ld;
const double eps = 1e-6;
const ll N = 1e3 + 10;
const ll M = 4e6 + 10;
const ll INF = 1e8+10;
const ll mod = 1e9+7;
#define ywh666 std::ios::sync_with_stdio(false),cin.tie(0),cout.tie(0);
#define all(a) a.begin(),a.end()
int main(){
	ywh666;
	int t;
	cin >> t;
	while(t --){
		int m, n;
		cin >> n >> m ;
		int mi = 0x3f3f3f3f;
		if(n >= m){
			cout << n - m << endl;
		}else{
			m -- ;
			for(int l = 1, r ; l <= n ; l = r + 1){
				r = min(n, m / (m / l));
				mi = min(mi, (m / l) * l);
			}
			cout << mi + n - m - 1 << endl;
		}
	}
		
	
	return 0 ;
}
posted @ 2022-04-06 14:41  _etilletas  阅读(117)  评论(0编辑  收藏  举报