每日博客1
一、实验目的
(1)通过实验掌握 Spark SQL 的基本编程方法;
(2)熟悉 RDD 到 DataFrame 的转化方法;
(3)熟悉利用 Spark SQL 管理来自不同数据源的数据。
二、实验平台
操作系统: Ubuntu16.04
Spark 版本:2.1.0
数据库:MySQL
三、实验内容和要求
1.Spark SQL 基本操作
将下列 JSON 格式数据复制到 Linux 系统中,并保存命名为 employee.json。
{ "id":1 , "name":" Ella" , "age":36 }
{ "id":2, "name":"Bob","age":29 }
{ "id":3 , "name":"Jack","age":29 }
{ "id":4 , "name":"Jim","age":28 }
{ "id":4 , "name":"Jim","age":28 }
{ "id":5 , "name":"Damon" }
{ "id":5 , "name":"Damon" }
为 employee.json 创建 DataFrame,并写出 Scala 语句完成下列操作:
(1) 查询所有数据;
主讲教师:林子雨 http://www.cs.xmu.edu.cn/linziyu 第 1 页厦门大学林子雨,赖永炫,陶继平 编著《Spark 编程基础(Scala 版)》 教材配套机房上机实验指南
实验 5 Spark SQL 编程初级实践
主讲教师:林子雨 http://www.cs.xmu.edu.cn/linziyu 第 2 页
(2) 查询所有数据,并去除重复的数据;
(3) 查询所有数据,打印时去除 id 字段;
(4) 筛选出 age>30 的记录;
(5) 将数据按 age 分组;
(6) 将数据按 name 升序排列;
(7) 取出前 3 行数据;
(8) 查询所有记录的 name 列,并为其取别名为 username;
(9) 查询年龄 age 的平均值;
(10) 查询年龄 age 的最小值。
2.编程实现将 RDD 转换为 DataFrame
源文件内容如下(包含 id,name,age):
1,Ella,36
2,Bob,29
3,Jack,29
请将数据复制保存到 Linux 系统中,命名为 employee.txt,实现从 RDD 转换得到
DataFrame,并按“id:1,name:Ella,age:36”的格式打印出 DataFrame 的所有数据。请写出程序代
码。
3. 编程实现利用 DataFrame 读写 MySQL 的数据
(1)在 MySQL 数据库中新建数据库 sparktest,再创建表 employee,包含如表 6-2 所示的
两行数据。
表 6-2 employee 表原有数据
id
name
gender
Age
1
Alice
F
22
2
John
M
25
(2)配置 Spark 通过 JDBC 连接数据库 MySQL,编程实现利用 DataFrame 插入如表 6-3 所
示的两行数据到 MySQL 中,最后打印出 age 的最大值和 age 的总和。
表 6-3 employee 表新增数据
id
name
gender
age
3
Mary
F
26
4
Tom
M
23
四、实验报告
《Spark 编程基础》实验报告
题目:
姓名:
日期:
实验环境:
实验内容与完成情况: (1) 查询所有数据;
(2) 查询所有数据,并去除重复的数据;
(3) 查询所有数据,打印时去除 id 字段;
(4) 筛选出 age>30 的记录;
(5) 将数据按 age 分组;
(6) 将数据按 name 升序排列;
(7) 取出前 3 行数据;
(8) 查询所有记录的 name 列,并为其取别名为 username;
import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder
import org.apache.spark.sql.Encoder
import spark.implicits._
object RDDtoDF {
def main(args: Array[String]) {
case class Employee(id:Long,name: String, age: Long)
val employeeDF =
spark.sparkContext.textFile("file:///usr/local/spark/employee.txt").map(_.split(",")).map(at tributes => Employee(attributes(0).trim.toInt,attributes(1), attributes(2).trim.toInt)).toDF()
employeeDF.createOrReplaceTempView("employee")
val employeeRDD = spark.sql("select id,name,age from employee")
employeeRDD.map(t => "id:"+t(0)+","+"name:"+t(1)+","+"age:"+t(2)).show()
}
}
出现的问题:
解决方案(列出遇到的问题和解决办法,列出没有解决的问题)