11.22作业
1.使用朴素贝叶斯模型对iris数据集进行花分类
尝试使用3种不同类型的朴素贝叶斯:
高斯分布型
from sklearn import datasets iris = datasets.load_iris() from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() pred = gnb.fit(iris.data, iris.target) y_pred = pred.predict(iris.data) print(iris.data.shape[0],(iris.target != y_pred).sum())
多项式型
from sklearn import datasets iris = datasets.load_iris() from sklearn.naive_bayes import MultinomialNB gnb = MultinomialNB() pred = gnb.fit(iris.data, iris.target) y_pred = pred.predict(iris.data) print(iris.data.shape[0],(iris.target != y_pred).sum())
伯努利型
from sklearn import datasets iris = datasets.load_iris() from sklearn.naive_bayes import BernoulliNB gnb = BernoulliNB() pred = gnb.fit(iris.data, iris.target) y_pred = pred.predict(iris.data) print(iris.data.shape[0],(iris.target != y_pred).sum())
2.使用sklearn.model_selection.cross_val_score(),对模型进行验证。
from sklearn.naive_bayes import GaussianNB from sklearn.model_selection import cross_val_score gnb = GaussianNB() acores = cross_val_score(gnb, iris.data, iris.target, cv=10) print("Accuracy:%.3f"%acores.mean())
from sklearn.naive_bayes import BernoulliNB from sklearn.model_selection import cross_val_score gnb = BernoulliNB() acores = cross_val_score(gnb, iris.data, iris.target, cv=10) print("Accuracy:%.3f"%acores.mean())
from sklearn.naive_bayes import MultinomialNB from sklearn.model_selection import cross_val_score gnb = MultinomialNB() acores = cross_val_score(gnb, iris.data, iris.target, cv=10) print("Accuracy:%.3f"%acores.mean())
3. 垃圾邮件分类
数据准备:
- 用csv读取邮件数据,分解出邮件类别及邮件内容。
- 对邮件内容进行预处理:去掉长度小于3的词,去掉没有语义的词等
尝试使用nltk库:
pip install nltk
import nltk
nltk.download
不成功:就使用词频统计的处理方法
训练集和测试集数据划分
- from sklearn.model_selection import train_test_split
import csv file_path = r"C:/Users/Administrator/Desktop/SMSSpamCollectionjsn.txt" sms = open(file_path,'r',encoding = 'utf-8') sms_data = [] sms_label = [] csv_reader = csv.reader(sms,delimiter='\t') for line in csv_reader: sms_label.append(line[0]) sms_data.append(line[1]) sms.close() sms_data sms_label
from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test = train_test_split(sms_data,sms_label,test_size=0.3,random_state=0,stratify=sms_label)
from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test = train_test_split(sms_data,sms_label,test_size = 0.3,random_state=0,stratify=sms_label) x_train x_test