10.25作业

聚类--K均值算法:自主实现与sklearn.cluster.KMeans调用

1.用python实现K均值算法

K-means是一个反复迭代的过程,算法分为四个步骤:(x,k,y)

import numpy as np
x = np.random.randint(1,100,[20,1])
y = np.zeros(20)
k = 3
#1) 选取数据空间中的K个对象作为初始中心,每个对象代表一个聚类中心;
def initcenter(x,k):
    return x[0:k].reshape(k)

#2) 对于样本中的数据对象,根据它们与这些聚类中心的欧氏距离,按距离最近的准则将它们分到距离它们最近的聚类中心(最相似)所对应的类;
def nearest(kc,i):
    d = abs(kc-i)
    w = np.where(d == np.min(d))
    return w[0][0]
def xclassify(x,y,kc):
    for i in range(x.shape[0]):
        y[i] = nearset(kc,x[i])
    return y

#3) 更新聚类中心:将每个类别中所有对象所对应的均值作为该类别的聚类中心,计算目标函数的值;
def kcmean(x,y,kc,k):
    l = list(kc)
    flag = False
    for c in range(k):
        print(c)
        m = np.where(y == c)
        n=np.mean(x[m])
        if l[c] != n:
            l[c] = n
            flag = True
            print(l,flag)
        return (np.array(1),flag)   
    
#4) 判断聚类中心和目标函数的值是否发生改变,若不变,则输出结果,若改变,则返回2)。
k=3
kc = initcenter(x,k)
flag = True
print(x,y,kc,flag)

 while flag:
    y = xclassify(x,y,kc)
    kc,flag = kcmean(x,y,kc,k)
print(x,y)

2. 鸢尾花花瓣长度数据做聚类并用散点图显示。

from sklearn.datasets import load_iris
iris = load_iris()
datas = iris.data
iris_length=datas[:,2]

x = np.array(iris_length)
y = np.zeros(x.shape[0])
kc = initcenter(x,3)
flag = True
while flag:
    y = xclassify(x,y,kc)
    kc,flag = kcmean(x,y,kc,3)
print(kc,flag)


import matplotlib.pyplot as plt plt.scatter(iris_length, iris_length, marker='p', c=y, alpha=0.5, linewidths=4, cmap='Paired') plt.show()

 

3. 用sklearn.cluster.KMeans,鸢尾花花瓣长度数据做聚类并用散点图显示.

from sklearn.cluster import KMeans
iris_length = datas[:,2:3]
k_means = KMeans(n_clusters=3)
result = k_means.fit(iris_length)
kc1 = result.cluster_centers_
y_kmeans = k_means.predict(iris_length)

plt.scatter(iris_length,np.linspace(1,150,150),c=y_kmeans,marker='*',cmap='rainbow',linewidths=4)
plt.show()

4. 鸢尾花完整数据做聚类并用散点图显示.

k_means1 = KMeans(n_clusters=3)
result1 = k_means1.fit(datas)
kc2 = result1.cluster_centers_
y_kmeans1 = k_means1.predict(datas)

print(y_kmeans1, kc2)
print(kc2.shape, y_kmeans1.shape, datas.shape)

plt.scatter(datas[:, 0], datas[:, 1], c=y_kmeans1, marker='p', cmap='flag', linewidths=4, alpha=0.6)
plt.show()

posted @ 2018-10-31 20:25  郑裕莹  阅读(115)  评论(0编辑  收藏  举报