11.29作业
朴素贝叶斯应用:垃圾邮件分类
1. 数据准备:收集数据与读取
2. 数据预处理:处理数据
3. 训练集与测试集:将先验数据按一定比例进行拆分。
4. 提取数据特征,将文本解析为词向量 。
5. 训练模型:建立模型,用训练数据训练模型。即根据训练样本集,计算词项出现的概率P(xi|y),后得到各类下词汇出现概率的向量 。
6. 测试模型:用测试数据集评估模型预测的正确率。
混淆矩阵
准确率、精确率、召回率、F值
7. 预测一封新邮件的类别。
8. 考虑如何进行中文的文本分类(期末作业之一)。
要点:
理解朴素贝叶斯算法
理解机器学习算法建模过程
理解文本常用处理流程
理解模型评估方法
import nltk from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer
#预处理 def processing(text): text = text.decode("UTF-8") tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)] stops = stopwords.words("english") tokens = [token for token in tokens if token not in stops] tokens = [token.lower() for token in tokens if len(token)>=3] lmtzr = WordNetLemmatizer() tokens = [lmtzr.lemmatize(token) for token in tokens] preprocessed_text = ''.join(tokens) return preprocessed_text
text
text = '''I've been searching for the right words to thank you for this breather. I promise i wont take your help for granted and will fulfil my promise. You have been wonderful and a blessing at all times. ham I HAVE A DATE ON SUNDAY WITH WILL!! '''
#读取文件 import csv file_path=r'C:\Users\Administrator\Desktop\SMSSpamCollectionjsn.txt' sms = open(file_path,'r',encoding='utf-8') sms_data = [] sms_label = [] csv_reader = csv.reader(sms,delimiter='\t') for line in csv_reader: sms_label.append(line[0]) sms_data.append(line[1]) sms.close()
#按0.7:0.3比例分为训练集和测试集 import numpy as np sms_data=np.array(sms_data) sms_label=np.array(sms_label)
from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test = train_test_split(sms_data,sms_label,test_size=0.3,random_state=0,stratify=sms_label)
#将其向量化 from sklearn.feature_extraction.text import TfidfVectorizer vectorizer=TfidfVectorizer(min_df=2,ngram_range=(1,2),stop_words='english',strip_accents='unicode',norm='l2') X_train=vectorizer.fit_transform(x_train) X_test=vectorizer.transform(x_test)
#朴素贝叶斯分类群 from sklearn.naive_bayes import MultinomialNB clf=MultinomialNB().fit(X_train,y_train) y_nb_pred=clf.predict(X_test)
#分类结果显示 from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report
print(y_nb_pred.shape,y_nb_pred)#x_test预测结果 print('nb_confusion_matrik:') cm=confusion_matrix(y_test,y_nb_pred)#混淆矩阵 print(cm) print('nb_classification_report:') cr=classification_report(y_test,y_nb_pred)#主要分类指标的文本报告 print(cr) feature_names=vectorizer.get_feature_names()#出现过的单词列表 coefs=clf.coef_#先验概率 P(x_i|y),6034 feature_log_prob_ intercept=clf.intercept_#P(y),class_log_prior_:array,shape(n_classes,) coefs_with_fns=sorted(zip(coefs[0],feature_names))#对数概率P(x_i|y)与单词x_i映射
n=10 top=zip(coefs_with_fns[:n],coefs_with_fns[:-(n+1):-1]) for(coef_1,fn_1),(coef_2,fn_2) in top: print('\t%.4f\t%-15s\t\t%.4f\t%-15s'%(coef_1,fn_1,coef_2,fn_2)) sms_label print(len(x_train),len(x_test)) print(X_train.shape,X_test.shape) x_train X_train a=X_train.toarray() a
# 输出不为0的列 for i in range(1000): for j in range(5984): if a[i,j]!=0: print(i,j,a[i,j]) vectorizer.get_feature_names()[1610]
# 提取特征值 tfidf.get_feature_names()[630:650]