摘要:
深度学习最近火的不行,因为在某些领域应用的效果确实很好,深度学习本质上就是机器学习的一个topic,是深度人工神经网络的另一种叫法,因此理解深度学习首先要理解人工神经网络。 1、人工神经网络 人工神经网络又叫神经网络,是借鉴了生物神经网络的工作原理形成的一种数学模型。下面是一张生物神经元的图示: 生 阅读全文
摘要:
现实世界中多数特征都不是连续变量,比如分类、文字、图像等,为了对非连续变量做特征表述,需要对这些特征做数学化表述,因此就用到了特征提取。 1、分类变量的特征提取 比如城市作为一个特征,那么就是一系列散列的城市标记,这类特征我们用二进制编码来表示,是这个城市为1,不是这个城市为0 比如有三个城市:北京 阅读全文
摘要:
1、综述 scikit-learn的线性回归模型都是通过最小化成本函数来计算参数的,通过矩阵乘法和求逆运算来计算参数。当变量很多的时候计算量会非常大,因此我们改用梯度下降法,批量梯度下降法每次迭代都用所有样本,快速收敛但性能不高,随机梯度下降法每次用一个样本调整参数,逐渐逼近,效率高,本节我们来利用 阅读全文
摘要:
撰写日期:2017-03-12 多元真实情况未必是线性的,有时需要增加指数项,也就是多项式回归,现实世界的曲线关系都是通过增加多项式实现的,本节介绍用scikit-learn解决多项式回归问题。 1、住房价格成本 样本 面积(平方米) 价格(万元) 2、绘图 1 import sys 2 reloa 阅读全文
摘要:
一般情况下,一个因变量是和多个自变量有关的,比如一个商品的价格和原料价格、加工方法、上市时间、品牌价值等有关,也就是多元线性,本节介绍如何用scikit-learn解决多元线性回归问题。 1、多元线性回归模型 方程:Y=Xβ 求解多元线性回归问题就是求解β: 因为X不一定是方阵,所以不能直接β=X- 阅读全文
摘要:
1、概念 一元线性回归是最简单的一种模型,但应用广泛,比如简单地预测商品价格、成本评估等,都可以用一元线性模型,本节主要讲解scikit-learn一元线性回归的使用以及作图说明。 y=f(x)叫做一元函数,回归的意思就是根据已知数据复原某些值,线性回归(regression)就是用线性的模型做回归 阅读全文
摘要:
解决方法: 修改/usr/local/lib/python2.7/site-packages/IPython/utils/terminal.py中的 from backports.shutil_get_terminal_size import get_terminal_size as _get_te 阅读全文
摘要:
参考文档: http://mp.weixin.qq.com/s?__biz=MzA4OTYwNzk0NA==&mid=2649700392&idx=1&sn=8540506c3263501f3551171b6a6161db&chksm=8803c24fbf744b59dad24bdcdd68d744 阅读全文