LeetCode: Permutation Sequence 解题报告

Permutation Sequence

    https://oj.leetcode.com/problems/permutation-sequence/

The set [1,2,3,…,n] contains a total of n! unique permutations.

By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):

  1. "123"
  2. "132"
  3. "213"
  4. "231"
  5. "312"
  6. "321"

Given n and k, return the kth permutation sequence.

Note: Given n will be between 1 and 9 inclusive.

解答:

1. 以某一数字开头的排列有(n-1)! 个。
例如: 123, 132, 以1开头的是 2!个
2. 所以第一位数字就可以用 (k-1) / (n-1)!  来确定 .这里K-1的原因是,序列号我们应从0开始计算,否则在边界时无法计算。
3. 第二位数字。假设前面取余后为m,则第二位数字是 第 m/(n-2)! 个未使用的数字。
4. 不断重复2,3,取余并且对(n-k)!进行除法,直至计算完毕

以下为主页君的代码,敬请指正:

解法1:

采用比较复杂的boolean来计算数字的索引(我们需要用一个boolean的数组来记录未使用的数字):

 1 package Algorithms.permutation;
 2 
 3 /*
 4  The set [1,2,3,…,n] contains a total of n! unique permutations.
 5 
 6 By listing and labeling all of the permutations in order,
 7 We get the following sequence (ie, for n = 3):
 8 
 9     "123"
10     "132"
11     "213"
12     "231"
13     "312"
14     "321"
15 
16 Given n and k, return the kth permutation sequence.
17 
18 Note: Given n will be between 1 and 9 inclusive.
19  * */
20 public class PermutationSequence {
21     public static String getPermutation(int n, int k) {
22         if (n == 0) {
23             return "";
24         }
25         
26         // 先计算出(n)!
27         int num = 1;
28         for (int i = 1; i <= n; i++) {
29             num *= i;
30         }
31         
32         boolean[] use = new boolean[n];
33         for (int i = 0; i < n; i++) {
34             use[i] = false;
35         }
36         
37         // 因为index是从0开始计算 
38         k--;
39         StringBuilder sb = new StringBuilder();
40         for (int i = 0; i < n; i++) {
41             // 计算完第一个数字前,num要除以(n)
42             num = num / (n - i);
43             
44             int index = k / num;
45             k = k % num;
46             
47             for (int j = 0; j < n; j++) {                
48                 if (!use[j]) {
49                     if (index == 0) {
50                         // 记录下本次的结果.
51                         sb.append((j + 1) + "");
52                         use[j] = true;
53                         break;
54                     }
55                     
56                     // 遇到未使用过的数字,记录index
57                     index--;
58                 }
59             }
60         }
61         
62         return sb.toString();
63     }
64 
65     public static void main(String[] args) {
66         System.out.println(getPermutation(3, 5));
67     }
68 
69 }
View Code

 

解法2:

优化后,使用链表来记录未使用的数字,每用掉一个,将它从链表中移除即可。

 1 public String getPermutation1(int n, int k) {
 2         // 1:17 -> 1:43
 3         LinkedList<Character> digits = new LinkedList<Character>();
 4         
 5         // bug 2: should only add n elements.
 6         for (char i = '1'; i <= '0' + n; i++) {
 7             digits.add(i);
 8         }
 9         
10         k = k - 1;
11         StringBuilder sb = new StringBuilder();
12         
13         int sum = 1;
14         // n!
15         for (int i = 1; i <= n; i++) {
16             sum *= i;
17         }
18         
19         int cur = n;
20         while (!digits.isEmpty()) {
21             sum /= cur;
22             cur--;
23             
24             int digitIndex = k / sum;
25             k = k % sum;
26             //Line 25: error: cannot find symbol: method digits(int)
27             sb.append(digits.get(digitIndex));
28             // remove the used digit.
29             digits.remove(digitIndex);
30         }
31         
32         return sb.toString();
33     }
View Code

 

解法3:

在2解基础进一步优化,使用for 循环替代while 循环,更简洁:

 1 public String getPermutation(int n, int k) {
 2         // 1:17 -> 1:43
 3         LinkedList<Character> digits = new LinkedList<Character>();
 4         
 5         // bug 2: should only add n elements.
 6         for (char i = '1'; i <= '0' + n; i++) {
 7             digits.add(i);
 8         }
 9         
10         // The index start from 0;
11         k--;
12         StringBuilder sb = new StringBuilder();
13         
14         int sum = 1;
15         // n!
16         for (int i = 1; i <= n; i++) {
17             sum *= i;
18         }
19         
20         for (int i = n; i >= 1; i--) {
21             sum /= i;
22             int digitIndex = k / sum;
23             k = k % sum;
24             
25             //Line 25: error: cannot find symbol: method digits(int)
26             sb.append(digits.get(digitIndex));
27             
28             // remove the used digit.
29             digits.remove(digitIndex);
30         }
31         
32         return sb.toString();
33     }
View Code

GitHub代码链接

posted on 2015-01-14 18:03  Yu's Garden  阅读(1330)  评论(0编辑  收藏  举报

导航