LeetCode: Minimum Path Sum 解题报告
Minimum Path Sum
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
SOLUTION 1:
相当基础的DP题目:
This is a simple DP.
表达式: D[i][j]: 从左下到本点的最小值
递推公式: D[i][j] = Math.mn(D[i - 1][j], D[i][j - 1]) + grid[i][j]
初始化: D[i][j] = grid[i][j].
终止条件:到达终点
1 // Solution 1: DP 2 public int minPathSum1(int[][] grid) { 3 if (grid == null || grid.length == 0 || grid[0].length == 0) { 4 return 0; 5 } 6 7 int rows = grid.length; 8 int cols = grid[0].length; 9 int[][] D = new int[rows][cols]; 10 11 // This is a simple DP. 12 // 表达式: D[i][j]: 从左下到本点的最小值 13 // 递推公式: D[i][j] = Math.mn(D[i - 1][j], D[i][j - 1]) + grid[i][j] 14 // 初始化: D[i][j] = grid[i][j]. 15 for (int i = 0; i < rows; i++) { 16 for (int j = 0; j < cols; j++) { 17 D[i][j] = grid[i][j]; 18 19 if (i == 0 && j != 0) { 20 D[i][j] += D[i][j - 1]; 21 } else if (j == 0 && i != 0) { 22 D[i][j] += D[i - 1][j]; 23 } else if (i != 0 && j != 0) { 24 D[i][j] += Math.min(D[i][j - 1], D[i - 1][j]); 25 } 26 } 27 } 28 29 return D[rows - 1][cols - 1]; 30 }
SOLUTION 2:
使用DFS + Memory也可以解决问题。当前到终点有2种方式,往右,往下,两种路线,取一个较小的路线就行了。
1 public class Solution { 2 // Solution 1: DP 3 public int minPathSum1(int[][] grid) { 4 if (grid == null || grid.length == 0 || grid[0].length == 0) { 5 return 0; 6 } 7 8 int rows = grid.length; 9 int cols = grid[0].length; 10 int[][] D = new int[rows][cols]; 11 12 // This is a simple DP. 13 // 表达式: D[i][j]: 从左下到本点的最小值 14 // 递推公式: D[i][j] = Math.mn(D[i - 1][j], D[i][j - 1]) + grid[i][j] 15 // 初始化: D[i][j] = grid[i][j]. 16 for (int i = 0; i < rows; i++) { 17 for (int j = 0; j < cols; j++) { 18 D[i][j] = grid[i][j]; 19 20 if (i == 0 && j != 0) { 21 D[i][j] += D[i][j - 1]; 22 } else if (j == 0 && i != 0) { 23 D[i][j] += D[i - 1][j]; 24 } else if (i != 0 && j != 0) { 25 D[i][j] += Math.min(D[i][j - 1], D[i - 1][j]); 26 } 27 } 28 } 29 30 return D[rows - 1][cols - 1]; 31 } 32 33 // Solution 2: DFS + memory. 34 public int minPathSum(int[][] grid) { 35 if (grid == null || grid.length == 0 || grid[0].length == 0) { 36 return 0; 37 } 38 39 int[][] memory = new int[grid.length][grid[0].length]; 40 41 // Bug 1: forget to initilize 42 for (int i = 0; i < grid.length; i++) { 43 for (int j = 0; j < grid[0].length; j++) { 44 memory[i][j] = -1; 45 } 46 } 47 48 return dfs(grid, 0, 0, memory); 49 } 50 51 public int dfs (int[][] grid, int i, int j, int[][] memory) { 52 int rows = grid.length; 53 int cols = grid[0].length; 54 55 if (i >= rows || j >= cols) { 56 // 表示不可达 57 return Integer.MAX_VALUE; 58 } 59 60 // The base case: arrive the destination. 61 if (i == rows - 1 && j == cols - 1) { 62 return grid[i][j]; 63 } 64 65 // 已经搜索过的点不需要重复搜索 66 if (memory[i][j] != -1) { 67 return memory[i][j]; 68 } 69 70 int sum = grid[i][j]; 71 72 // 开始dfs 可能的路径,目前我们只有2种可能 73 sum += Math.min(dfs(grid, i + 1, j, memory), dfs(grid, i, j + 1, memory)); 74 75 // Record the memory 76 memory[i][j] = sum; 77 return sum; 78 } 79 }
GITHUB:
https://github.com/yuzhangcmu/LeetCode_algorithm/blob/master/dp/MinPathSum_1222_2014.java
posted on 2014-12-22 20:06 Yu's Garden 阅读(722) 评论(0) 编辑 收藏 举报