LeetCode: Maximum Product Subarray 解题报告

Maximum Product Subarray

Find the contiguous subarray within an array (containing at least one number) which has the largest product.
For example, given the array [2,3,-2,4],
the contiguous subarray [2,3] has the largest product = 6.
Array Dynamic Programming

 

SOLUTION 1

使用DP来做:

因为有正负值好几种情况。所以我们计算当前节点最大值,最小值时,应该考虑前一位置的最大值,最大值几种情况。(例如:如果当前为-2, 前一个位置最小值为-6,最大值为8,那么当前最大值应该是-2*-6 = 12)

对于以index位置结尾的连续子串来说,计算最大,最小值可以三种选择:

1. 当前值* 前一位置的最大值。

2. 当前值* 前一位置的最小值。

3. 丢弃前一伴置的所有的值

我们对这三项取最大值,最小值,就可以得到当前的最大乘积,最小乘积。

 1 package Algorithms.array;
 2 
 3 public class MaxProduct {
 4     public static int maxProduct(int[] A) {
 5         if (A == null || A.length == 0) {
 6             return 0;
 7         }
 8         
 9         // record the max value in the last node.
10         int DMax = A[0];
11         
12         // record the min value in the last node.
13         int DMin = A[0];
14         
15         // This is very important, should recode the A[0] as the initial value.
16         int max = A[0];
17         
18         for (int i = 1; i < A.length; i++) {
19             int n1 = DMax * A[i];
20             int n2 = DMin * A[i];
21             
22             // we can select the former nodes, or just discade them.
23             DMax = Math.max(A[i], Math.max(n1, n2));
24             max = Math.max(max, DMax);
25             
26             // we can select the former nodes, or just discade them.
27             DMin = Math.min(A[i], Math.min(n1, n2));
28         }
29         
30         return max;
31     }
32     
33     /*
34      * 作法是找到连续的正数,不断相乘即可。
35      * */
36     public static void main(String[] strs) {
37         int[] A = {2, 3, -2, 4};
38         
39         System.out.println(maxProduct(A));
40     }
41 }
View Code

2014.12.20  Redo

 1 public class Solution {
 2     public int maxProduct(int[] A) {
 3         if (A == null || A.length == 0) {
 4             return 0;
 5         }
 6         
 7         int max = 1;
 8         int min = 1;
 9         
10         int ret = Integer.MIN_VALUE;
11         for (int i = 0; i < A.length; i++) {
12             int n1 = max * A[i];
13             int n2 = min * A[i];
14             
15             max = Math.max(A[i], Math.max(n1, n2));
16             min = Math.min(A[i], Math.min(n1, n2));
17             
18             ret = Math.max(max, ret);
19         }
20         
21         return ret;
22     }
23 }
View Code

GITHUB:

https://github.com/yuzhangcmu/LeetCode_algorithm/blob/master/array/MaxProduct.java

posted on 2014-10-22 18:06  Yu's Garden  阅读(1154)  评论(0编辑  收藏  举报

导航