Kaggle_distribution

0 setup

配置文件

import pandas as pd
pd.plotting.register_matplotlib_converters()
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
print("Setup Complete")

check

# Set up code checking
import os
if not os.path.exists("../input/cancer_b.csv"):
    os.symlink("../input/data-for-datavis/cancer_b.csv", "../input/cancer_b.csv")
    os.symlink("../input/data-for-datavis/cancer_m.csv", "../input/cancer_m.csv")
from learntools.core import binder
binder.bind(globals())
from learntools.data_viz_to_coder.ex5 import *
print("Setup Complete")

1 载入数据

# Paths of the files to read
cancer_b_filepath = "../input/cancer_b.csv"
cancer_m_filepath = "../input/cancer_m.csv"

# Fill in the line below to read the (benign) file into a variable cancer_b_data
cancer_b_data = pd.read_csv(cancer_b_filepath,index_col="Id")

# Fill in the line below to read the (malignant) file into a variable cancer_m_data
cancer_m_data = pd.read_csv(cancer_m_filepath,index_col="Id")

step2 review the data

打印出肿瘤数据的前五行 benign

# Print the first five rows of the (benign) data
cancer_b_data.head()

打印出肿瘤数据的前五行 malignant

cancer_m_data.head()

找到数据

# Fill in the line below: In the first five rows of the data for benign tumors, what is the
# largest value for 'Perimeter (mean)'?
max_perim = 87.46

# Fill in the line below: What is the value for 'Radius (mean)' for the tumor with Id 842517?
mean_radius = 20.57

良心肿瘤和恶性肿瘤的直方图

# Histograms for benign and maligant tumors
sns.distplot(a=cancer_b_data['Area (mean)'],label="Benign",kde=False)
sns.distplot(a=cancer_m_data['Area (mean)'],label="Malignant",kde=False)
step_3.a.check()

 

step4 a 曲线图下无阴影

sns.kdeplot(data=cancer_m_data['Radius (worst)'],label="Malignant") 
sns.kdeplot(data=cancer_b_data['Radius (worst)'],label="Benign") 

step4 a 曲线图下有阴影

sns.kdeplot(data=cancer_m_data['Radius (worst)'], shade=True, label="Malignant") 
sns.kdeplot(data=cancer_b_data['Radius (worst)'], shade=True, label="Benign") 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 DiagnosisRadius (mean)Texture (mean)Perimeter (mean)Area (mean)Smoothness (mean)Compactness (mean)Concavity (mean)Concave points (mean)Symmetry (mean)...Radius (worst)Texture (worst)Perimeter (worst)Area (worst)Smoothness (worst)Compactness (worst)Concavity (worst)Concave points (worst)Symmetry (worst)Fractal dimension (worst)
Id                     
842302 M 17.99 10.38 122.80 1001.0 0.11840 0.27760 0.3001 0.14710 0.2419 ... 25.38 17.33 184.60 2019.0 0.1622 0.6656 0.7119 0.2654 0.4601 0.11890
842517 M 20.57 17.77 132.90 1326.0 0.08474 0.07864 0.0869 0.07017 0.1812 ... 24.99 23.41 158.80 1956.0 0.1238 0.1866 0.2416 0.1860 0.2750 0.08902
84300903 M 19.69 21.25 130.00 1203.0 0.10960 0.15990 0.1974 0.12790 0.2069 ... 23.57 25.53 152.50 1709.0 0.1444 0.4245 0.4504 0.2430 0.3613 0.08758
84348301 M 11.42 20.38 77.58 386.1 0.14250 0.28390 0.2414 0.10520 0.2597 ... 14.91 26.50 98.87 567.7 0.2098 0.8663 0.6869 0.2575 0.6638 0.17300
84358402 M 20.29 14.34 135.10 1297.0 0.10030 0.13280 0.1980 0.10430 0.1809 ... 22.54 16.67 152.20 1575.0 0.1374 0.2050 0.4000 0.1625 0.2364 0.07678

posted on 2020-05-16 11:29  yukun093  阅读(334)  评论(0编辑  收藏  举报

导航