Kaggle_Data Visualization of Bar Charts and Heatmaps
step0 activate bar charts and heatmaps
载入库文件
import pandas as pd pd.plotting.register_matplotlib_converters() import matplotlib.pyplot as plt %matplotlib inline import seaborn as sns print("Setup Complete")
设置代码检测
# Set up code checking import os if not os.path.exists("../input/ign_scores.csv"): os.symlink("../input/data-for-datavis/ign_scores.csv", "../input/ign_scores.csv") from learntools.core import binder binder.bind(globals()) from learntools.data_viz_to_coder.ex3 import * print("Setup Complete")
载入数据
ign_filepath="../inputs/ign_scores.csv" ign_data=pd.read_csv(ign_filepath,index_col="Platform",parse_dates=True) step_1.check()
step2 review the data
print the data
print(ign_data) # Your code here
取出数据,做测验并check
# Fill in the line below: What is the highest average score received by PC games, # for any platform? high_score = 7.759930 # Fill in the line below: On the Playstation Vita platform, which genre has the # lowest average score? Please provide the name of the column, and put your answer # in single quotes (e.g., 'Action', 'Adventure', 'Fighting', etc.) worst_genre = 'Simulation' # Check your answers step_2.check()
step3 pick up the best platform
create a bar chart
plt.figure(figsize=(12,6)) sns.barplot(x=ign_data["Racing"],y=ign_data.index) plt.title("X_label") step_3.a.check()
step4 all possible combination
heatmap预备知识
import numpy as np import seaborn as sns data = np.array([[1,2,3],[4,5,6],[7,8,9]]) sns.heatmap(data,annot=True)
# Heatmap showing average game score by platform and genre plt.figure(figsize=(10,10)) sns.heatmap(ign_data,annot=True) plt.xlabel("Genre")
plt.title("Average Game Score, by Platform and Genre") # Check your answer step_4.a.check()