Modular Inverse(zoj3609+欧几里德)

Modular Inverse


Time Limit: 2 Seconds      Memory Limit: 65536 KB

The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1x (mod m). This is equivalent to ax≡1 (mod m).

Input

There are multiple test cases. The first line of input is an integer T ≈ 2000 indicating the number of test cases.

Each test case contains two integers 0 < a ≤ 1000 and 0 < m ≤ 1000.

Output

For each test case, output the smallest positive x. If such x doesn't exist, output "Not Exist".

Sample Input

3
3 11
4 12
5 13

Sample Output

4
Not Exist
8

References


Author: WU, Zejun
Contest: The 9th Zhejiang Provincial Collegiate Programming Contest

 

 

 

首先我来回顾下欧几里德的几个定理,有助于理解这道题;

   定理一:如果d = gcd(a, b),则必能找到正的或负的整数k和l,使 d = a*x+ b*y。

   定理二:若gcd(a, b) = 1,则方程ax ≡ c (mod b)在[0, b-1]上有唯一解。

   定理三:若gcd(a, b) = d,则方程ax ≡ c (mod b)在[0, b/d - 1]上有唯一解。

 

转载请注明出处:寻找&星空の孩子

题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4712

对于ax+by=1;  即ax=1(mod b)      当且仅当gcd(a,b)!=1 的时候,无解!

 

 

 1 #include<stdio.h>
 2 
 3 void exgcd(int a,int b,int &d,int &x,int &y)
 4 {
 5     if(!b){d=a;x=1;y=0;}
 6     else
 7     {
 8         exgcd(b,a%b,d,y,x);
 9         y-=x*(a/b);
10     }
11 }
12 int main()
13 {
14     int T,a,m;
15     scanf("%d",&T);
16     while(T--)
17     {
18         int d,x,y;
19         scanf("%d%d",&a,&m);
20         exgcd(a,m,d,x,y);
21         if(d==1)
22         {
23             while(x<=0)
24             {
25                 x+=m/d;
26             }
27             printf("%d\n",x);
28         }
29         else
30             printf("Not Exist\n");
31     }
32     return 0;
33 }
View Code

 

posted @ 2015-04-27 23:22  寻找&星空の孩子  阅读(510)  评论(0编辑  收藏  举报