游戏运营数据解析-MAU DAU DAU/MAU

最近在做一些社交SNS方面的数据分析工作,发现了一些与游戏运营相通的东西,社交游戏的某些指标和术语其实在大型的网游数据分析方面也可以使用。本质上他们代表的含义是一致的,只是在表现和分析的角度上不同而已。今天来说三个术语MAU,DAU,DAU/MAU。

本文综合了一些论坛博客的文章以及国外一些材料,不对或有歧义之处还请各位纠正和谅解。

MAU=Monthly Activited Users  月活跃用户

应用在SNS社交游戏和大型网络游戏中,其含义表示在自统计之日算起一个月内登录过游戏的玩家总量。

DAU=Daily Activited Users  日活跃用户

关于此数据,存在一定的争议,有的度量是把每日重复登录的用户也统计在内,但是这种情况下没有适当的代表游戏的真实数据水平。

另外一种度量方式是不计算重复登录的玩家,统计每日登录过游戏的玩家即可。

这两个目标可以衡量服务的衰退周期。

DAU/MAU

用户活跃度指数衡量用户的黏性,留存率,游戏收益情况,这在社交游戏中使用率非常高,可以认定为用户活跃度指数,也就是用户的活跃度如何,理论上可以接受的风险值是0.2,也就是说当值低于0.2时,游戏的整体服务进入一个衰退的阶段,只不过这个衰退的阶段依据游戏本身的寿命还有长短之分。

当比值接近1时,那么用户很活跃,流失率低,黏性强。

DAU/MAU怎么解释来解释原理?

我们假设MAU是不变的,如果DAU在增加,说明游戏对用户的口碑和黏性开始发生深度的交互作用,在每日登录游戏的用户规模越大,越逼近MAU的水平,那么就是说用户上线的天数和频率增加。如果DAU下降,那么用户开始对游戏失去兴趣。

“MAU和DAU分别从宏观和微观角度对服务的用户黏性进行了权衡,也可以这么说,MAU更像战略层面的表征,DAU更像战术层面的表征。”

示例:

如果一款游戏拥有50万DAU,100万MAU,那么比值是0.5,也就说玩家每月平均体验游戏时间为0.5*30=15天。说明游戏黏性比较强。

DAU/MAU的最低极限是0.2,这保证游戏能够达到临界规模的病毒式传播和用户粘性。

事实上,对于一款产品,如果在OBT的前三个月DAU和MAU都会保持稳定的增长,因为这个时期,用户处在初次安装以及大量的广告投入,而真正看游戏的品质和生命力应该从OBT之后的3个月算起。

也就是说能够指示我们游戏成功运营的标志之一就是DAU/MAU,如果在之后该值保持在20%以上,那么他拥有稳定的用户留存率,并持续获利。而这个值应该在OBT3个月后再来衡量,换句话如果只在初期获得高的值,而后迅速下跌,那么说明游戏本身对玩家吸引力不足,留存率不高。

posted @ 2011-12-07 11:00  data->intelligence  阅读(42375)  评论(11编辑  收藏  举报