np.where的嵌套使用

您可以使用numpy.where尝试以下内容:

# Import package
import numpy as np

# Conditions
sb = (df['Employment'] == 'Salaried') | (df['Annual income of policy owner'] == 'Business Owner')
non_stop = (df['STP flagging'] == 'NON STP')
stop = (df['STP flagging'] == 'STP')
lakhs = df['Annual income of policy owner']

# Assignment
df['result'] = np.where(sb & stop & (lakhs.eq('>10 lakh')),'No Issue',
                        np.where(sb & non_stop & (lakhs.eq('<=10 lakh')),"No issue",
                        np.where(sb & non_stop & (lakhs.eq('>10 lakh')),"Issue",
                        np.where(sb & stop & (lakhs.eq('<= 10 lakh')),"Issue","No condition"))))

# Print new column values
>>> df['result'].value_counts()

No condition    5618
Issue           1264
No Issue         618
Name: result, dtype: int64

 

posted @   C羽言  阅读(138)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具
点击右上角即可分享
微信分享提示