np.where的嵌套使用
您可以使用numpy.where
尝试以下内容:
# Import package
import numpy as np
# Conditions
sb = (df['Employment'] == 'Salaried') | (df['Annual income of policy owner'] == 'Business Owner')
non_stop = (df['STP flagging'] == 'NON STP')
stop = (df['STP flagging'] == 'STP')
lakhs = df['Annual income of policy owner']
# Assignment
df['result'] = np.where(sb & stop & (lakhs.eq('>10 lakh')),'No Issue',
np.where(sb & non_stop & (lakhs.eq('<=10 lakh')),"No issue",
np.where(sb & non_stop & (lakhs.eq('>10 lakh')),"Issue",
np.where(sb & stop & (lakhs.eq('<= 10 lakh')),"Issue","No condition"))))
# Print new column values
>>> df['result'].value_counts()
No condition 5618
Issue 1264
No Issue 618
Name: result, dtype: int64
分类:
NumPy
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具