如何使用np.where()添加具有条件的多列
您可以多次使用该条件:
mask = df['contract'] > '0L000099'
df['column1'] = np.where(mask, 1, 2)
df['column2'] = np.where(mask, 3, 4)
或者甚至颠倒条件:
df['column2'] = np.where(~mask, 1, 2)
因为你的问题已经更新了,这里有更新的答案,但是我不确定这是否有用:
import pandas as pd
df = pd.DataFrame({'test':range(0,10)})
mask = df['test'] > 3
m_len = len(mask)
df['column1'], df['column2'] = np.where([mask, mask], [[1]*m_len, [3]*m_len], [[2]*m_len, [4]*m_len])
test column1 column2
0 0 2 4
1 1 2 4
2 2 2 4
3 3 2 4
4 4 1 3
5 5 1 3
6 6 1 3
7 7 1 3
8 8 1 3
9 9 1 3
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具