Spark项目应用-电子商务大数据分析总结

一. 数据采集(要求至少爬取三千条记录,时间跨度超过一星期)数据采集到本地文件内容

   爬取详见:python爬取京东评论

   爬取了将近20000条数据,156个商品种类,用时2个多小时,期间中断数次

  

   

 二、数据预处理:要求使用MapReduce或者kettle实现源数据的预处理,对大量的Json文件,进行清洗,以得到结构化的文本文件

    在解析json时,处理了一部分,包括日期格式修改,数据格式转换等,在kettle中做去重、排序处理

 

三.数据统计:生成Hive用户评论数据

(1)在Hive创建一张表,用于存放清洗后的数据,表名为pinglun,(创建数据表SQL语句),创建成功导入数据截图:

  使用presto查询,速度比hive快好几倍

  

  需求1:分析用户使用移动端购买还是PC端购买,及移动端和PC端的用户比例,生成ismobilehive表,存储统计结果;

  

  需求2:分析用户评论周期(收到货后,一般多久进行评论),生成dayssql表,存储统计结果;

   

  需求3:分析会员级别(判断购买此商品的用户级别),生成userlevelname_out表,存储统计结果;

  

   需求4:分析每天评论量,生成creationtime_out表,存储统计结果;

  

四.利用Sqoop进行数据迁移至Mysql数据库: 

   四个表导入mysql数据库中四个表截图

  

         

 

五.数据可视化:利用JavaWeb+Echarts完成数据图表展示过程

  需求1可视化展示截图

  

  需求2可视化展示截图

  

  需求3可视化展示截图

  

  需求4可视化展示截图

  

六.中文分词实现用户评价分析

(1)本节通过对商品评论表中的差评数据,进行分析,筛选用户差评点,以知己知彼。(筛选差评数据集截图)

    基于TextRank算法进行关键词抽取

import json

import jieba
from jieba import analyse

ll =[]
# 引入TextRank关键词抽取接口
textrank = analyse.textrank
with open('shoes283.json', 'r', encoding='utf-8') as f:
    data = json.load(f)
for i in range(0, len(data)):
    ll.append(data[i]['content'].replace(',','').replace('\n',';'))

# 基于TextRank算法进行关键词抽取
keywords = textrank(' '.join(ll),topK=100)
# 输出抽取出的关键词
for keyword in keywords:
    print(keyword + "/")

 

(2)利用 python 结巴分词实现用户评价信息中的中文分词及词频统计;(分词后截图)

   主要利用jieba去除标点符号,停用词,单个字符等等

import csv
import json
import re

import jieba

ll =[]
def regex_change(line):
    # 前缀的正则
    username_regex = re.compile(r"^\d+::")
    # URL,为了防止对中文的过滤,所以使用[a-zA-Z0-9]而不是\w
    url_regex = re.compile(r"""
        (https?://)?
        ([a-zA-Z0-9]+)
        (\.[a-zA-Z0-9]+)
        (\.[a-zA-Z0-9]+)*
        (/[a-zA-Z0-9]+)*
    """, re.VERBOSE | re.IGNORECASE)
    # 剔除日期
    data_regex = re.compile(u"""        #utf-8编码
        年 |
        月 |
        日 |
        (周一) |
        (周二) | 
        (周三) | 
        (周四) | 
        (周五) | 
        (周六)
    """, re.VERBOSE)
    # 剔除所有数字
    decimal_regex = re.compile(r"[^a-zA-Z]\d+")
    # 剔除空格
    space_regex = re.compile(r"\s+")
    regEx = "[\n”“|,,;;''/?! 。的了是]"  # 去除字符串中的换行符、中文冒号、|,需要去除什么字符就在里面写什么字符
    line = re.sub(regEx, "", line)
    line = username_regex.sub(r"", line)
    line = url_regex.sub(r"", line)
    line = data_regex.sub(r"", line)
    line = decimal_regex.sub(r"", line)
    line = space_regex.sub(r"", line)

    return line


with open('data/shoes156.json', 'r', encoding='utf-8') as f:
    data = json.load(f)

for i in range(0, len(data)):
    ll.append(data[i]['content'].replace(',','').replace('\n',';'))

words = jieba.lcut(regex_change(' '.join(ll)))  # 使用精确模式对文本进行分词
counts = {}  # 通过键值对的形式存储词语及其出现的次数

for word in words:
    if word in "|,,;;''/?! 。::" or len(word) == 1:  # 单个词语不计算在内
        continue
    else:
        counts[word] = counts.get(word, 0) + 1  # 遍历所有词语,每出现一次其对应的值加 1

items = list(counts.items())  # 将键值对转换成列表
items.sort(key=lambda x: x[1], reverse=True)  # 根据词语出现的次数进行从大到小排序

a =[]
b = []
for i in range(0,len(items)):
    #word, count = items[i]
    #b.append([list(items[i])[0],list(items[i])[1]])
    print([list(items[i])[0],list(items[i])[1]])
    with open("comments_jieba.txt", "a+", encoding='utf-8',newline='') as file:  # 处理csv读写时不同换行符  linux:\n    windows:\r\n    mac:\r
        csv_file = csv.writer(file)
        csv_file.writerow([list(items[i])[0],list(items[i])[1]])

(3)在 hive 中新建词频统计表并加载分词数据;

 

 ①柱状图可视化展示用户差评的统计前十类

 ②用词云图可视化展示用户差评分词

 

七.利用Spark进行实时数据分析

本实验以京东商品评论为目标网站,架构采用爬虫+Flume+Kafka+Spark Streaming+Mysql,实现数据动态实时的采集、分析、展示数据。

 

具体工作流程如下图:

 

操作步骤截图

1.启动flume

 flume配置文件

pro.sources = s1
pro.channels = c1
pro.sinks = k1
 
pro.sources.s1.type = exec
pro.sources.s1.command = tail -F /opt/a.log #日志文件
 
pro.channels.c1.type = memory
pro.channels.c1.capacity = 1000
pro.channels.c1.transactionCapacity = 100
 
pro.sinks.k1.type = org.apache.flume.sink.kafka.KafkaSink
pro.sinks.k1.kafka.topic = ct #需要启动这个topic
pro.sinks.k1.kafka.bootstrap.servers = node1:9092,node2:9092,node3:9092
pro.sinks.k1.kafka.flumeBatchSize = 20
pro.sinks.k1.kafka.producer.acks = 1
pro.sinks.k1.kafka.producer.linger.ms = 1
pro.sinks.k1.kafka.producer.compression.type = snappy
 
pro.sources.s1.channels = c1
pro.sinks.k1.channel = c1

启动:

 bin/flume-ng agent --conf-file flume-kafka.conf --name pro -Dflume.root.logger=INFO,LOGFILE

 

2.启动kafka

#查看topic信息
/export/server/kafka/bin/kafka-topics.sh --list --zookeeper node1:2181

#删除topic
/export/server/kafka/bin/kafka-topics.sh --delete --zookeeper node1:2181 --topic edu

#创建topic
/export/server/kafka/bin/kafka-topics.sh --create --zookeeper node1:2181 --replication-factor 1 --partitions 3 --topic ct

#模拟消费者
/export/server/kafka/bin/kafka-console-consumer.sh --bootstrap-server node1:9092 --topic ct --from-beginning

3.编写爬虫向日志文件传输数据

 代码:

# -*- coding: utf-8 -*-
import gzip
import urllib.request
import json
import time
import random
import demjson as dj
import requests
import itertools

headers = {
    "Cookie": "__jdu=1507876332; shshshfpa=2ea021ee-52dd-c54e-1be1-f5aa9e333af2-1640075639; areaId=5; PCSYCityID=CN_0_0_0; shshshfpb=n7UymiTWOsGPvQfCup%2B3J1g%3D%3D; ipLoc-djd=5-142-42547-54561; jwotest_product=99; pinId=S4TjgVP4kjjnul02leqp07V9-x-f3wj7; pin=jd_60a1ab2940be3; unick=jd_60a1ab2940be3; ceshi3.com=000; _tp=672TNfWmOtaDFuqCPQqYycXMpi6F%2BRiwrhIuumNmoJ4%3D; _pst=jd_60a1ab2940be3; __jdc=122270672; shshshfp=4e8d45f57897e469586da47a0016f20e; ip_cityCode=142; CCC_SE=ADC_rzqTR2%2bUDTtHDYjJdX25PEGvHsBpPY%2bC9pRDVdNK7pU%2fwikRihpN3XEXZ1cn4Jd4w5OWdpJuduhBFwUvdeB6X1VFb7eIZkqL0OJvBn9RB6AJYo4An%2fGTiU%2b8rvqQwYxBI4QCM8a9w9kYQczygSjPxPjn1pbQLtBgo%2fzKBhwfKhAWs563NfBjmnRlkGHPX6E7jy6%2fEdfEhtkNSTCQod238cEpUFpKiQ%2bWV%2bW8MiaL3ti7d7ozdlNbZ03ylqRbI1XrXylDiqzW%2b2uALhF5H1eHuk3yH3t4ojXZmRbDy3k2OoZFk%2bcmrXD0eWhcIaD5RnhHbToYLuX%2byx7otaPuemTVAG4Z7CSyEfmUBAj7QuGmHg647a7KuoaR3hoCvxj%2f3woXdd2H9b40oqmJ5PO958Z1g%2fr7Jbk8a5w2CU547IaXRzakehLhW9xzG57Ak0Jhv85Jlt9A5N6hl%2ft4DSAwh%2bGhwg%3d%3d; unpl=JF8EAJJnNSttDBxWAxxSEkUVQg4EW1QKTx9TazcCAV8KSFICE1FIF0N7XlVdXhRKFR9vYhRUW1NPVA4ZBysSEXteVV1YCE0TAGlnNWRtW0tkBCsCHxMWQltTXF8LeycDZ2M1VFxZSlYGHQEbEBBCbWRbXQlKFQBpYQVQbVl7VTVZbEJTDBkCBxNdDEoRCmlgB1ZeaEpkBg; JSESSIONID=347F847A6818E35675648739BD4BA9FF.s1; __jda=122270672.1507876332.1640075637.1647251498.1647261295.13; thor=8D225D1673AA75681B9D3811417B0D325568BB2DD7F2729798D3AECF0428F59F7C70EA7504347F8E059F895AEE7D6E2662F565665845F0D94F2D7D56739CF3BC2B15F5F6E2ADDB891DDA80A9E9F88B7BA0BA95147512F78D28D8095E52379AB78550E451558DB6595C2270A1D5CFA2E211FF20F22ADA1987C6AE9E864DA6A7364D5BFD3EE08DA597D2EF2B37444CFD7A47134EFFD71B3A70B0C8BD55D51F274F; token=397b2c7c58f4021bbe9a9bbe9eeda694,3,915145; __tk=46fbcc7e51f75824dcdc2e8820904365,3,915145; shshshsID=5c5095f0b5728a839c0397308d625da5_1_1647261360535; __jdb=122270672.2.1507876332|13.1647261295; __jdv=122270672|jd.idey.cn|t_2024175271_|tuiguang|ef376a8f48ba48359a5a6d3c2769bb4b|1647261360584; 3AB9D23F7A4B3C9B=24HI5ARAA3SK7RJERTWUDZKA2NYJIXX3ING24VG466VC3ANKUALJLLD7VBYLQ3QPRYUSO3R6QBJYLVTVXBDIGJLGBA",
    "Accept": "*/*",
    "Accept-Encoding": "gzip, deflate, br",
    "Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8,en-GB;q=0.7,en-US;q=0.6",
    "Connection": "keep-alive",
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/99.0.4844.51 Safari/537.36 Edg/99.0.1150.39"
}
headers2 = {
    "accept": "*/*",
    "accept-encoding": "gzip, deflate, br",
    "accept-language": "zh-CN,zh;q=0.9,en;q=0.8,en-GB;q=0.7,en-US;q=0.6",
    "cookie": "__jdu=1507876332; shshshfpa=2ea021ee-52dd-c54e-1be1-f5aa9e333af2-1640075639; areaId=5; PCSYCityID=CN_0_0_0; ipLoc-djd=5-142-42547-54561; pinId=S4TjgVP4kjjnul02leqp07V9-x-f3wj7; pin=jd_60a1ab2940be3; unick=jd_60a1ab2940be3; _tp=672TNfWmOtaDFuqCPQqYycXMpi6F%2BRiwrhIuumNmoJ4%3D; _pst=jd_60a1ab2940be3; user-key=a2aaf011-2c1e-4dea-bf76-3392d16b1fb1; __jdc=122270672; wlfstk_smdl=jlwwba2gmccq62touff9evvbp3fk8gbr; ceshi3.com=000; shshshfp=4e8d45f57897e469586da47a0016f20e; ip_cityCode=142; shshshfpb=n7UymiTWOsGPvQfCup%2B3J1g%3D%3D; joyya=1647305570.1647305909.27.0kop377; __jda=122270672.1507876332.1640075637.1647314039.1647318046.22; token=d5899471c4530886f6a9658cbea3ca94,3,915176; __tk=1570759a7dd1a720b0db2dec5df8d044,3,915176; CCC_SE=ADC_Wj0UWzuXioxsiUvbIxw9PbW9q011vNMASHkfjXFO%2fZlkeGDtZUHe5qgaEpWv8RDEkCruGSGmCItsvHjIZ3aHbh9heUjNIZh6WZl9ZDfDokk66kRX6I%2by%2bDsdf4JtPOQUuULSsWOA%2fcDyP7Bb91YuHOwNnciLtS97UIKO7XA5sAd34Rf4XDKijy6Fw1DFTx%2b7izzme6YALuLp9Y%2bByC6aUTDzU9te7g1BZXPXtfGGwqu52ZVkdVId2jpxPnhX24fFD9WI9aX1qgswZ1PPZSGYKswUkqXhIf2S9aLFkjXW2n61LVzw2ZeqJRQI8QIcmi%2fF7WHOHLbWScnKwG594WIk0SRiCa0n2aEJAhVlXmzEE%2f5%2f%2bXWsKhlneTLduVs52ST5m96zdx%2bLnNGgDERqznFNu3AT5zvLcN0PyVq08n4keSv2ngLLTZK4QQJslS4he9MT3XJoEUfe9L8beZNh1239eLHYF6w4KWMCWWTfwxdCUOY%3d; unpl=JF8EAJZnNSttDEhSAkwDE0dEGAoEWw8LSh9TbjRVXV5QHFIDGwMfGhd7XlVdXhRKFR9vYxRUXlNIUw4ZBysSEXteVV1YCE0TAGlnNWRtW0tkBCsCHxMWQltTXF8LeycDZ2M1VFxZSlYGGwcTEhhObWRbXQlKFQBpYQVQbVl7VTVNbBsTEUpcVVteDENaA2tmA11bX0lWBisDKxE; __jdv=122270672|jd.idey.cn|t_2024175271_|tuiguang|e276f09debfa4c209a0ba829f7710596|1647318395561; thor=8D225D1673AA75681B9D3811417B0D325568BB2DD7F2729798D3AECF0428F59F4C39726C44E930AA2DD868FC4BCA33EA0D52228F39A68FC9F5C1157433CAACF1110B20B6975502864453B70E6B21C0ED165B733359002643CD05BDBA37E4A673AF38CC827B6013BCB5961ADA022E57DB6811E99E10E9C4E6410D844CD129071F7646EC7CE120A0B3D2F768020B044A010452D9F8ABD67A59D41880DD1991935C; 3AB9D23F7A4B3C9B=24HI5ARAA3SK7RJERTWUDZKA2NYJIXX3ING24VG466VC3ANKUALJLLD7VBYLQ3QPRYUSO3R6QBJYLVTVXBDIGJLGBA; __jdb=122270672.5.1507876332|22.1647318046; shshshsID=d7a96097b296c895558adfd840546a72_5_1647318650562",
    "referer": "https://search.jd.com/"
}
def crawlProductComment(url):
    # 读取原始数据(注意选择gbk编码方式)
    try:
        req = requests.get(url=url, headers=headers2).text
        reqs = req.replace("fetchJSON_comment98(", "").strip(');')
        print(reqs)
        jsondata = json.loads(reqs)
        # 遍历商品评论列表
        comments = jsondata['comments']
        return comments
    except IOError:
        print("Error: gbk不合适")
    # 从原始数据中提取出JSON格式数据(分别以'{'和'}'作为开始和结束标志)



def getProduct(url):
    ids = []
    req = requests.get(url=url, headers=headers2).text
    reqs = req.replace("jQuery1544821(", "").strip(')')
    jsondata = json.loads(reqs)['291']
    for i in range(0, len(jsondata)):
        ids.append(jsondata[i]['sku_id'])
    print(ids)
    return ids







import paramiko

#服务器信息,主机名(IP地址)、端口号、用户名及密码
hostname = "node1"
port = 22
username = "root"
password = "123456"


client = paramiko.SSHClient()
client.set_missing_host_key_policy(paramiko.AutoAddPolicy())
client.connect(hostname, port, username, password, compress=True)
sftp_client = client.open_sftp()
remote_file = sftp_client.open("/opt/a.log",'a+')  # 文件路径
ids = []
for i in range(2,3):
    product_id = getProduct(
        "https://search-x.jd.com/Search?callback=jQuery1544821&area=5&enc=utf-8&keyword=%E7%94%B7%E5%A3%AB%E8%BF%90%E5%8A%A8%E9%9E%8B&adType=7&page="+str(i)+"&ad_ids=291%3A33&xtest=new_search&_=1647325621019")
    time.sleep(random.randint(1, 3))
    ids.append(product_id)

data = []
count = 0
for k in list(set(itertools.chain.from_iterable(ids))):
    for i in range(0, 100):
        url = 'https://club.jd.com/comment/productPageComments.action?callback=fetchJSON_comment98&productId=' + str(
            k) + '&score=0&sortType=5&page=' \
              + str(i) + '&pageSize=10&isShadowSku=0&fold=1'
        comments = crawlProductComment(url)
        if len(comments) <= 0:
            break
        print(comments)
        remote_file.writelines(str(len(comments))+"\n")
        data.extend(comments)
        # 设置休眠时间
        time.sleep(random.randint(1, 5))
        print('-------', i)

    print("这是第{}类商品".format(count))
    count += 1

kafka接收到数据并显示出来

4.sparkstreaming接收kafka数据并保存至mysql,动态存储

 代码:

package cn.itcast.edu.analysis.streaming

import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.streaming.dstream.{DStream, InputDStream}
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.{HashPartitioner, SparkConf, SparkContext}
import org.apache.spark.streaming.{Seconds, StreamingContext}

import java.sql.{Connection, DriverManager}
import java.text.SimpleDateFormat
import java.util.Date


/**
 * Author itcast
 * Desc Direct模式连接Kafka消费数据
 */
object Streaming {
  def main(args: Array[String]): Unit = {
    //TODO 0.准备环境
    val conf: SparkConf = new SparkConf().setAppName("spark").setMaster("local[*]")
    val sc: SparkContext = new SparkContext(conf)
    sc.setLogLevel("WARN")
    //the time interval at which streaming data will be divided into batches
    val ssc: StreamingContext = new StreamingContext(sc,Seconds(5))//每隔5s划分一个批次
    ssc.checkpoint("./ckp")

    //TODO 1.加载数据-从Kafka
    val kafkaParams = Map[String, Object](
      "bootstrap.servers" -> "node1:9092",//kafka集群地址
      "key.deserializer" -> classOf[StringDeserializer],//key的反序列化规则
      "value.deserializer" -> classOf[StringDeserializer],//value的反序列化规则
      "group.id" -> "ct",//消费者组名称
      //earliest:表示如果有offset记录从offset记录开始消费,如果没有从最早的消息开始消费
      //latest:表示如果有offset记录从offset记录开始消费,如果没有从最后/最新的消息开始消费
      //none:表示如果有offset记录从offset记录开始消费,如果没有就报错
      "auto.offset.reset" -> "latest",
      "auto.commit.interval.ms"->"5000",//自动提交的时间间隔
      "enable.auto.commit" -> (true: java.lang.Boolean)//是否自动提交
    )
    val topics = Array("ct")//要订阅的主题
    //使用工具类从Kafka中消费消息
    val kafkaDS: InputDStream[ConsumerRecord[String, String]] = KafkaUtils.createDirectStream[String, String](
      ssc,
      LocationStrategies.PreferConsistent, //位置策略,使用源码中推荐的
      ConsumerStrategies.Subscribe[String, String](topics, kafkaParams) //消费策略,使用源码中推荐的
    )

    //TODO 2.处理消息
    val infoDS: DStream[Int] = kafkaDS.map(record => {
      val nowDate = new Date()
      val strDate: String = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(nowDate)
      val value: String = record.value()
      Class.forName("com.mysql.jdbc.Driver")
      //获取mysql连接
      val conn: Connection = DriverManager.getConnection("jdbc:mysql://node3:3306/edu?useUnicode=true&characterEncoding=utf-8", "root", "123456")
      //把数据写入mysql
      try {
          val sql: String = "insert into spider(spider_time,number)values('" + strDate + "','" + value.toInt + "')"
          conn.prepareStatement(sql).executeUpdate()
      } finally {
        conn.close()
      }
      value.toInt
    })
    //TODO 3.输出结果
    infoDS.print()
    //TODO 4.启动并等待结束
    ssc.start()
    ssc.awaitTermination()//注意:流式应用程序启动之后需要一直运行等待手动停止/等待数据到来

    //TODO 5.关闭资源
    ssc.stop(stopSparkContext = true, stopGracefully = true)//优雅关闭
  
  }
}

pom.xml配置

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
  xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
  <modelVersion>4.0.0</modelVersion>

  <groupId>cn.itcast</groupId>
  <artifactId>dataproject</artifactId>
  <version>1.0-SNAPSHOT</version>
  <packaging>war</packaging>

  <name>dataproject Maven Webapp</name>
  <!-- FIXME change it to the project's website -->
  <url>http://www.example.com</url>

  <properties>
    <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
    <maven.compiler.source>1.7</maven.compiler.source>
    <maven.compiler.target>1.7</maven.compiler.target>
    <scala.version>2.12.11</scala.version>
    <spark.version>3.0.3</spark.version>
    <hadoop.version>3.1.4</hadoop.version>
  </properties>

  <repositories>
    <repository>
      <id>aliyun</id>
      <url>https://maven.aliyun.com/nexus/content/groups/public/</url>
    </repository>
    <repository>
      <id>apache</id>
      <url>https://repository.apache.org/content/repositories/snapshots/</url>
    </repository>
    <repository>
      <id>cloudera</id>
      <url>https://repository.cloudera.com/artifactory/cloudera-repos/</url>
    </repository>
  </repositories>
  <dependencies>
    <!--依赖Scala语言-->
    <dependency>
      <groupId>org.scala-lang</groupId>
      <artifactId>scala-library</artifactId>
      <version>${scala.version}</version>
    </dependency>

    <!--SparkCore依赖-->
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-core_2.12</artifactId>
      <version>${spark.version}</version>
    </dependency>

    <!-- spark-streaming-->
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-streaming_2.12</artifactId>
      <version>${spark.version}</version>
    </dependency>

    <!--spark-streaming+Kafka依赖-->
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-streaming-kafka-0-10_2.12</artifactId>
      <version>${spark.version}</version>
    </dependency>

    <!--SparkSQL依赖-->
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-sql_2.12</artifactId>
      <version>${spark.version}</version>
    </dependency>

    <!--SparkSQL+ Hive依赖-->
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-hive_2.12</artifactId>
      <version>${spark.version}</version>
    </dependency>
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-hive-thriftserver_2.12</artifactId>
      <version>${spark.version}</version>
    </dependency>

    <!--StructuredStreaming+Kafka依赖-->
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-sql-kafka-0-10_2.12</artifactId>
      <version>${spark.version}</version>
    </dependency>

    <!-- SparkMlLib机器学习模块,里面有ALS推荐算法-->
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-mllib_2.12</artifactId>
      <version>${spark.version}</version>
    </dependency>

    <dependency>
      <groupId>org.apache.hadoop</groupId>
      <artifactId>hadoop-client</artifactId>
      <version>2.7.5</version>
    </dependency>

    <dependency>
      <groupId>com.hankcs</groupId>
      <artifactId>hanlp</artifactId>
      <version>portable-1.7.7</version>
    </dependency>

    <dependency>
      <groupId>mysql</groupId>
      <artifactId>mysql-connector-java</artifactId>
      <version>8.0.22</version>
    </dependency>

    <dependency>
      <groupId>redis.clients</groupId>
      <artifactId>jedis</artifactId>
      <version>2.9.0</version>
    </dependency>

    <dependency>
      <groupId>com.alibaba</groupId>
      <artifactId>fastjson</artifactId>
      <version>1.2.47</version>
    </dependency>

    <dependency>
      <groupId>org.projectlombok</groupId>
      <artifactId>lombok</artifactId>
      <version>1.18.2</version>
      <scope>provided</scope>
    </dependency>
    <dependency>
      <groupId>org.apache.spark</groupId>
      <artifactId>spark-sql_2.12</artifactId>
      <version>3.0.3</version>
    </dependency>
    <dependency>
      <groupId>com.google.code.gson</groupId>
      <artifactId>gson</artifactId>
      <version>2.8.2</version>
    </dependency>
  </dependencies>

  <build>
    <sourceDirectory>src/main/scala</sourceDirectory>
    <plugins>
      <!-- 指定编译java的插件 -->
      <plugin>
        <groupId>org.apache.maven.plugins</groupId>
        <artifactId>maven-compiler-plugin</artifactId>
        <version>3.5.1</version>
      </plugin>
      <!-- 指定编译scala的插件 -->
      <plugin>
        <groupId>net.alchim31.maven</groupId>
        <artifactId>scala-maven-plugin</artifactId>
        <version>3.2.2</version>
        <executions>
          <execution>
            <goals>
              <goal>compile</goal>
              <goal>testCompile</goal>
            </goals>
            <configuration>
              <args>
                <arg>-dependencyfile</arg>
                <arg>${project.build.directory}/.scala_dependencies</arg>
              </args>
            </configuration>
          </execution>
        </executions>
      </plugin>
      <plugin>
        <groupId>org.apache.maven.plugins</groupId>
        <artifactId>maven-surefire-plugin</artifactId>
        <version>2.18.1</version>
        <configuration>
          <useFile>false</useFile>
          <disableXmlReport>true</disableXmlReport>
          <includes>
            <include>**/*Test.*</include>
            <include>**/*Suite.*</include>
          </includes>
        </configuration>
      </plugin>
      <plugin>
        <groupId>org.apache.maven.plugins</groupId>
        <artifactId>maven-shade-plugin</artifactId>
        <version>2.3</version>
        <executions>
          <execution>
            <phase>package</phase>
            <goals>
              <goal>shade</goal>
            </goals>
            <configuration>
              <filters>
                <filter>
                  <artifact>*:*</artifact>
                  <excludes>
                    <exclude>META-INF/*.SF</exclude>
                    <exclude>META-INF/*.DSA</exclude>
                    <exclude>META-INF/*.RSA</exclude>
                  </excludes>
                </filter>
              </filters>
              <transformers>
                <transformer
                        implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                  <mainClass></mainClass>
                </transformer>
              </transformers>
            </configuration>
          </execution>
        </executions>
      </plugin>
    </plugins>
  </build>
</project>

5.可视化展示

 动态显示爬取的评论数量,每5秒更新图像,这里就不展示了

 详见:ecahrts实现动态刷新(隔几秒重新显示)

 

posted @ 2022-03-16 17:50  睡觉不困  阅读(1111)  评论(0编辑  收藏  举报