windows口令加密复现与PCFG算法还原

1.利用相关工具抓取本机的windows口令文件,调用OpenSSL中的算法生成口令hash,验证两者的一致性。

这里所说的相关工具选择mimikatz,给出其下载链接

http://www.ddooo.com/softdown/133908.htm

我们的实验环境为Win7虚拟机环境

对其口令进行抓取

mimikatz # log
mimikatz # privilege::debug
mimikatz # sekurlsa::logonpasswords

可以得到

img

LM-Hash

第一步 将明文口令转换为其大写形式

lsw521->LSW521

第二步 将字符串大写后转换为16进制字符串

img

第三步 密码不足14字节要求用0补全

4C53573532310000000000000000

第四步 将上述编码分成2组7字节(56bits=14*4)的数据

4C535735323100 和 00000000000000

第五步 将每一组7字节的十六进制转换为二进制,每7bit一组末尾加0,再转换成十六进制组成得到2组8字节的编码

第一组:

1001100001010010101010101100110010100110001000101000100000000000

9852aacca6228800

第二组:

0000000000000000

第六步 以上步骤得到的两组8字节编码,分别作为DES加密key为魔术字符串“KGS!@#$% ”进行加密

img

将其openssl加密

OpenSSL> des -k KGS!@#$% -in 1 -out 11

img

后者同理

在这时我想比对的时候才发现,LM已经没有了,无法比对呜呜呜呜呜呜呜

NTLM-Hash

第一步 ASCII转Unicode

img

第二步 MD4单向加密

OpenSSL> dgst -md4 uni
MD4(uni)= a0e503a3f5260abadcbdf3ebf4568830

img

与上面得到的系统得到结果比较

img

完全一致!!!

2.利用PCFG算法和部分泄露的口令库生成一个口令集,测试一下是否能还原Windows登录密码?

2.1 数据预处理

打开老师给的口令集,发现里面既有账号又有密码,而且两组数据集给出的格式还不一样,因此第一步要提取密码 对于人人网的数据集

img

其密码由tab键相隔,因此取tab键之间的部分就可以

# 导入 re 模块
import re

f = open('人人网.txt','r',encoding='latin1')
line = f.readlines()
f.close()
f = open('人人网密码.txt','w+',encoding='latin1')
for j in range(0,len(line)):
   for i in range(0,len(line[j])):
       if(line[j][i]=='\t'and i<len(line[j])):
           password=line[j][i+1:len(line[j])-2]
           ti=password+'\n'
           f.write(ti)
print("Finish 人人网")
f.close()

f = open('163.txt','r',encoding='latin1')
line = f.readlines()
f.close()
f = open('163密码.txt','w+',encoding='latin1')
for j in range(0,len(line)):
   li=re.findall('----([0-9]*[a-z]*[A-Z]*[\x00-\xff]*)----',line[j])
   f.write(li)
print("Finish 人人网")
f.close()

生成密码集为

img

对于163的数据,其包含两种类型:

第一种是用户名+密码+邮箱

img

第二种是邮箱+密码

img

分别对其用正则表达式解决:

import re

f = open('163_2.txt','r',encoding='latin1')
line = f.readlines()
f.close()
f = open('163密码_2.txt','w+',encoding='latin1')
for j in range(0,len(line)):
   a=str(line[j])
   li=re.findall('----([0-9]*[a-z]*[A-Z]*[\x00-\x80]*)\n',a)
   lit=str(li)[2:len(li)-3]+"\n"
   f.write(lit)
print("Finish 163_2")
f.close()

f = open('163_1.txt','r',encoding='latin1')
line = f.readlines()
f.close()
f = open('163密码_1.txt','w+',encoding='latin1')
for j in range(0,len(line)):
   a=str(line[j])
   li=re.findall('----([0-9]*[a-z]*[A-Z]*[\x00-\x80]*)----',a)
   lit=str(li)[2:len(li)-3]+"\n"
   f.write(lit)
print("Finish 163_1")
f.close()

得到结果

img

最后将人人网和163的字典合并

2.2 生成规则集

下载得到PCFG源码,并将字典导入

img

打开spyder,运行trainer.py

img

In [7]: runfile('D:/学习/大三下/网络密码应用/PCFG/pcfg_cracker-master/trainer.py',args='-t train.txt -r result',wdir='D:/学习/大三下/网络密码应用/PCFG/pcfg_cracker-master')

  ____           __ __           ______           __  
  / __ \________ / /_/ /___ __   / ____/___ ____ / /  
/ /_/ / ___/ _ \/ __/ __/ / / / / /   / __ \/ __ \/ /  
/ ____/ / / __/ /_/ /_/ /_/ / / /___/ /_/ / /_/ / /    
/_/ __/_/_ \___/\__/\__/\__, /   \__________/\____/_/    
  / ____/_ __________ __/_/_   / ____/_ _____ _____________ _____
/ /_ / / / /_ /_ / / / / / / / __/ / / / _ \/ ___/ ___/ _ \/ ___/
/ __/ / /_/ / / /_/ /_/ /_/ / / /_/ / /_/ / __(__ |__ ) __/ /    
/_/____/__,_/ /___//__/\__, /   \____/\__,_/\___/____/____/\___/_/    
/_ __/________ _(_)___ /_/_ _____        
/ / / ___/ __ `/ / __ \/ _ \/ ___/        
/ / / / / /_/ / / / / / __/ /            
/_/ /_/   \__,_/_/_/ /_/\___/_/      

Version: 4.3

-----------------------------------------------------------------
Attempting to autodetect file encoding of the training passwords
-----------------------------------------------------------------
File Encoding Detected: utf-8
Confidence for file encoding: 0.938125
If you think another file encoding might have been used please
manually specify the file encoding and run the training program again

-------------------------------------------------
Performing the first pass on the training passwords
What we are learning:
A) Identify words for use in multiword detection
B) Identify alphabet for Markov chains
C) Duplicate password detection, (duplicates are good!)
-------------------------------------------------

Printing out status after every million passwords parsed
------------
1 Million
2 Million

Number of Valid Passwords: 2253866
Number of Encoding Errors Found in Training Set: 0

-------------------------------------------------
Performing the second pass on the training passwords
What we are learning:
A) Learning Markov (OMEN) NGRAMS
B) Training the core PCFG grammar
-------------------------------------------------

Printing out status after every million passwords parsed
------------
1 Million
2 Million

-------------------------------------------------
Calculating Markov (OMEN) probabilities and keyspace
This may take a few minutes
-------------------------------------------------

OMEN Keyspace for Level : 1 : 436
OMEN Keyspace for Level : 2 : 4540
OMEN Keyspace for Level : 3 : 41678
OMEN Keyspace for Level : 4 : 305908
OMEN Keyspace for Level : 5 : 1818836
OMEN Keyspace for Level : 6 : 9407907
OMEN Keyspace for Level : 7 : 42976466
OMEN Keyspace for Level : 8 : 176582831
OMEN Keyspace for Level : 9 : 699890971
OMEN Keyspace for Level : 10 : 2578401879
OMEN Keyspace for Level : 11 : 8816523722

-------------------------------------------------
Performing third pass on the training passwords
What we are learning:
A) What Markov (OMEN) probabilities the training passwords would be created at
-------------------------------------------------

1 Million
2 Million

-------------------------------------------------
Top 5 e-mail providers
-------------------------------------------------

126.com : 246
qq.com : 35
163.com : 9
sina.com : 6
sohu.com : 4

-------------------------------------------------
Top 5 URL domains
-------------------------------------------------

6.com : 33
126.com : 15
q.com : 13
dospy.com : 11
123.com : 8

-------------------------------------------------
Top 10 Years found
-------------------------------------------------

2008 : 1363
2009 : 1148
1987 : 1063
1988 : 917
1986 : 831
1989 : 788
1985 : 648
1984 : 597
1990 : 510
1983 : 507

-------------------------------------------------
Saving Data
-------------------------------------------------

PW Length 1 : 0
PW Length 2 : 0
PW Length 3 : 0
PW Length 4 : 31322
PW Length 5 : 362871
PW Length 6 : 568518
PW Length 7 : 441555
PW Length 8 : 333798
PW Length 9 : 199597
PW Length 10 : 125007
PW Length 11 : 95079
PW Length 12 : 20340
PW Length 13 : 11989
PW Length 14 : 9288
PW Length 15 : 5217
PW Length 16 : 2682
PW Length 17 : 313
PW Length 18 : 223
PW Length 19 : 132
PW Length 20 : 93
PW Length 21 : 23

In [8]:

得到规则集

img

2.3 生成口令集

Name: PRINCE Language Idexed N-Grams (Prince-Ling)

Overview: Constructs customized wordlists based on an already trained PCFG ruleset/grammar for use in PRINCE style combinator attacks. The idea behind this was since the PCFG trainer is already breaking up a training set up passwords into individual parsings, that information could be leveraged to make targeted wordlists for other attacks.

利用prince_ling词表生成器:

img

执行,生成含有10000000词目的口令集

In [18]: runfile('D:/学习/大三下/网络密码应用/PCFG/pcfg_cracker-master/prince_ling.py',args='-r result -s 10000000 -o key_set_final.txt',wdir='D:/学习/大三下/网络密码应用/PCFG/pcfg_cracker-master')
Reloaded modules: lib_princeling, lib_princeling.banner_info, lib_guesser, lib_guesser.priority_queue, lib_princeling.wordlist_generation, lib_guesser.grammar_io, lib_guesser.omen.optimizer, lib_guesser.omen.input_file_io, lib_guesser.omen.guess_structure, lib_guesser.omen.markov_cracker, lib_guesser.pcfg_grammar

x             x       ____       _                       __   _            
:xx xxxxxxxx xx:     / __ \_____(_)___ ________       / /   (_)___ ____ _
:xxxxxxxxxxxx:     / /_/ / ___/ / __ \/ ___/ _ \______/ /   / / __ \/ __ `/
:xxxxxxxxxx:     / ____/ / / / / / / /__/ __/_____/ /___/ / / / / /_/ /
:x(\xxxx/)x:     /_/   /_/ /_/_/ /_/\___/\___/     /_____/_/_/ /_/\__, /  
:xxxxxxxxxx:                                                     /____/  
  :xxxxxx:                                                                
    :xxxx:        -PRINCE Language Indexed N-Grams                          
    :xxxx:                                                                  
    :xxxx:        -Creates optimized wordlists for PRINCE style attacks    
  :xxxxxx:                                                                
  :xxxxxx:                                                                
  :xxxxxx:                                                                
  :xxxxxx:                                                                
  :xxxxxxxx:                                                                
:xxxxxxxxxx:                                                              
:xxxxxxxxxxxx:                                                              
:xxxxxxxxxx:                                                              

Version: 4.3

Loading Ruleset: result

creating wordlist
Done generating the PRINCE wordlist.

In [19]:

查看口令集

img

查询我的windows口令,发现并没有我的windows口令,所以我还是安全的

img

果然这样生成的口令集并没有基于现实含义,只是对常用口令的概率组合,因此很难破解有主观含义的字符串

posted @ 2022-04-08 11:07  Xiaohanahahah  阅读(1515)  评论(0编辑  收藏  举报