实验二 K-近邻算法及应用
作业信息
实验班级 | 机器学习实验-计算机18级 |
实验要求 | K-近邻算法及应用 |
实验目标 | 理解K-近邻算法原理,能实现算法K近邻算法 |
学号 | 3180701301 |
一、实验目的
1.理解K-*邻算法原理,能实现算法K*邻算法;
2.掌握常见的距离度量方法;
3.掌握K*邻树实现算法;
4.针对特定应用场景及数据,能应用K*邻解决实际问题。
二、实验内容
1.实现曼哈顿距离、欧氏距离、闵式距离算法,并测试算法正确性。
2.实现K*邻树算法;
3.针对iris数据集,应用sklearn的K*邻算法进行类别预测。
4.针对iris数据集,编制程序使用K*邻树进行类别预测。
三、实验报告要求
1.对照实验内容,撰写实验过程、算法及测试结果;
2.代码规范化:命名规则、注释;
3.分析核心算法的复杂度;
4.查阅文献,讨论K*邻的优缺点;
5.举例说明K*邻的应用场景。
四、实验过程及步骤
1.距离度量
利用python代码遍历三个点中,与1点距离最近的点
import math #导入数学运算函数 from itertools import combinations
#计算欧式距离 def L(x, y, p=2): # x1 = [1, 1], x2 = [5,1] 在这里,实例是两个二维特征 x1 = [1, 1], x2 = [5,1] if len(x) == len(y) and len(x) > 1: # 当两个特征的维数相等时,并且维度大于1时。 sum = 0 # 目前总的损失函数值为0 for i in range(len(x)): # 用range函数来遍历x所有的维度,x与y的维度相等。 sum += math.pow(abs(x[i] - y[i]), p) # math.pow( x, y )函数是计算x的y次方。 return math.pow(sum, 1/p)# 距离公式。 else: return 0
# 输入样例,该列来源于课本 x1 = [1, 1] x2 = [5, 1] x3 = [4, 4]
# 计算x1与x2和x3之间的距离 for i in range(1, 5): # i从1到4 r = { '1-{}'.format(c):L(x1, c, p=i) for c in [x2, x3]} # 创建一个字典 print(min(zip(r.values(), r.keys()))) # 当p=i时选出x2和我x3中距离x1最近的点
结果:
(3.0, '1-[4, 4]')
(3.0, '1-[4, 4]')
(3.0, '1-[4, 4]')
(3.0, '1-[4, 4]')
2.编写K-近邻算法
python实现,遍历所有数据点,找出n个距离最近的点的分类情况,少数服从多数(不使用直接的python中现有的K-近邻算法包)
# 导包 import numpy as np import pandas as pd import matplotlib.pyplot as plt %matplotlib inline from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from collections import Counter
# data 输入数据 iris = load_iris() # 获取python中鸢尾花Iris数据集 df = pd.DataFrame(iris.data, columns=iris.feature_names) # 将数据集使用DataFrame建表 df['label'] = iris.target # 将表的最后一列作为目标列 df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label'] # 定义表中每一列 # data = np.array(df.iloc[:100, [0, 1, -1]])
df # 将建好的表显示在屏幕上查看
结果:
#数据进行可视化 #将标签为0、1的两种花,根据特征为长度和宽度打点表示 plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0') plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1') plt.xlabel('sepal length') plt.ylabel('sepal width') plt.legend()
结果:
#取数据,并且分成训练和测试集合 data = np.array(df.iloc[:100, [0, 1, -1]]) #按行索引,取出第0列第1列和最后一列,即取出sepal长度、宽度和标签 X, y = data[:,:-1], data[:,-1]#X为sepal length,sepal width y为标签 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) # train_test_split函数用于将矩阵随机划分为训练子集和测试子集
# 建立一个类KNN,用于k-近邻的计算 class KNN: #初始化 def __init__(self, X_train, y_train, n_neighbors=3, p=2): # 初始化数据,neighbor表示邻近点,p为欧氏距离 self.n = n_neighbors self.p = p self.X_train = X_train self.y_train = y_train def predict(self, X): # X为测试集 knn_list = [] for i in range(self.n): # 遍历邻近点 dist = np.linalg.norm(X - self.X_train[i], ord=self.p) # 计算训练集和测试集之间的距离 knn_list.append((dist, self.y_train[i])) # 在列表末尾添加一个元素 for i in range(self.n, len(self.X_train)): # 3-20 max_index = knn_list.index(max(knn_list, key=lambda x: x[0])) # 找出列表中距离最大的点 dist = np.linalg.norm(X - self.X_train[i], ord=self.p) # 计算训练集和测试集之间的距离 if knn_list[max_index][0] > dist: # 若当前数据的距离大于之前得出的距离,就将数值替换 knn_list[max_index] = (dist, self.y_train[i]) # 统计 knn = [k[-1] for k in knn_list] count_pairs = Counter(knn) # 统计标签的个数 max_count = sorted(count_pairs, key=lambda x:x)[-1] # 将标签升序排列 return max_count # 计算测试算法的正确率 def score(self, X_test, y_test): right_count = 0 n = 10 for X, y in zip(X_test, y_test): label = self.predict(X) if label == y: right_count += 1 return right_count / len(X_test)
clf = KNN(X_train, y_train) # 调用KNN算法进行计算
clf.score(X_test, y_test) # 计算正确率
结果:Out [12]:1.0
#预测点 test_point = [6.0, 3.0] #预测结果 print('Test Point: {}'.format(clf.predict(test_point)))
结果:Test Point: 1.0
plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0') plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1') #打印预测点 plt.plot(test_point[0], test_point[1], 'bo', label='test_point') plt.xlabel('sepal length') plt.ylabel('sepal width') plt.legend()
结果:
3.使用scikitlearn中编好的包直接调用实现K-近邻算法
sklearn.neighbors.KNeighborsClassifier
n_neighbors: 临近点个数
p: 距离度量
algorithm: 近邻算法,可选{'auto', 'ball_tree', 'kd_tree', 'brute'}
weights: 确定近邻的权重
# 导包 from sklearn.neighbors import KNeighborsClassifier
# 调用 clf_sk = KNeighborsClassifier() clf_sk.fit(X_train, y_train)
结果:
Out[16]:
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=1, n_neighbors=5, p=2,
weights='uniform')
clf_sk.score(X_test, y_test) # 计算正确率
结果:Out [17]:1.0
4.针对iris数据集,编制程序使用K近邻树进行类别预测
建造kd树
# 建造kd树 # kd-tree 每个结点中主要包含的数据如下: class KdNode(object): def __init__(self, dom_elt, split, left, right): self.dom_elt = dom_elt#结点的父结点 self.split = split#划分结点 self.left = left#做结点 self.right = right#右结点 class KdTree(object): def __init__(self, data): k = len(data[0])#数据维度 #print("创建结点") #print("开始执行创建结点函数!!!") def CreateNode(split, data_set): #print(split,data_set) if not data_set:#数据集为空 return None #print("进入函数!!!") data_set.sort(key=lambda x:x[split])#开始找切分平面的维度 #print("data_set:",data_set) split_pos = len(data_set)//2 #取得中位数点的坐标位置(求整) median = data_set[split_pos] split_next = (split+1) % k #(取余数)取得下一个节点的分离维数 return KdNode( median, split, CreateNode(split_next, data_set[:split_pos]),#创建左结点 CreateNode(split_next, data_set[split_pos+1:]))#创建右结点 #print("结束创建结点函数!!!") self.root = CreateNode(0, data)#创建根结点 #KDTree的前序遍历 def preorder(root): print(root.dom_elt) if root.left: preorder(root.left) if root.right: preorder(root.right)
遍历kd树
# 遍历kd树 #KDTree的前序遍历 def preorder(root): print(root.dom_elt) if root.left: preorder(root.left) if root.right: preorder(root.right) from math import sqrt from collections import namedtuple # 定义一个namedtuple,分别存放最近坐标点、最近距离和访问过的节点数 result = namedtuple("Result_tuple", "nearest_point nearest_dist nodes_visited") #搜索开始 def find_nearest(tree, point): k = len(point)#数据维度 def travel(kd_node, target, max_dist): if kd_node is None: return result([0]*k, float("inf"), 0)#表示数据的无 nodes_visited = 1 s = kd_node.split #数据维度分隔 pivot = kd_node.dom_elt #切分根节点 if target[s] <= pivot[s]: nearer_node = kd_node.left #下一个左结点为树根结点 further_node = kd_node.right #记录右节点 else: #右面更近 nearer_node = kd_node.right further_node = kd_node.left temp1 = travel(nearer_node, target, max_dist) nearest = temp1.nearest_point# 得到叶子结点,此时为nearest dist = temp1.nearest_dist #update distance nodes_visited += temp1.nodes_visited print("nodes_visited:", nodes_visited) if dist < max_dist: max_dist = dist temp_dist = abs(pivot[s]-target[s])#计算球体与分隔超平面的距离 if max_dist < temp_dist: return result(nearest, dist, nodes_visited) # ------- #计算分隔点的欧式距离 temp_dist = sqrt(sum((p1-p2)**2 for p1, p2 in zip(pivot, target)))#计算目标点到邻近节点的Distance if temp_dist < dist: nearest = pivot #更新最近点 dist = temp_dist #更新最近距离 max_dist = dist #更新超球体的半径 print("输出数据:" , nearest, dist, max_dist) # 检查另一个子结点对应的区域是否有更近的点 temp2 = travel(further_node, target, max_dist) nodes_visited += temp2.nodes_visited if temp2.nearest_dist < dist: # 如果另一个子结点内存在更近距离 nearest = temp2.nearest_point # 更新最近点 dist = temp2.nearest_dist # 更新最近距离 return result(nearest, dist, nodes_visited) return travel(tree.root, point, float("inf")) # 从根节点开始递归
# 遍历kd树 #KDTree的前序遍历 def preorder(root): print(root.dom_elt) if root.left: preorder(root.left) if root.right: preorder(root.right) from math import sqrt from collections import namedtuple # 定义一个namedtuple,分别存放最近坐标点、最近距离和访问过的节点数 result = namedtuple("Result_tuple", "nearest_point nearest_dist nodes_visited") #搜索开始 def find_nearest(tree, point): k = len(point)#数据维度 def travel(kd_node, target, max_dist): if kd_node is None: return result([0]*k, float("inf"), 0)#表示数据的无 nodes_visited = 1 s = kd_node.split #数据维度分隔 pivot = kd_node.dom_elt #切分根节点 if target[s] <= pivot[s]: nearer_node = kd_node.left #下一个左结点为树根结点 further_node = kd_node.right #记录右节点 else: #右面更近 nearer_node = kd_node.right further_node = kd_node.left temp1 = travel(nearer_node, target, max_dist) nearest = temp1.nearest_point# 得到叶子结点,此时为nearest dist = temp1.nearest_dist #update distance nodes_visited += temp1.nodes_visited print("nodes_visited:", nodes_visited) if dist < max_dist: max_dist = dist temp_dist = abs(pivot[s]-target[s])#计算球体与分隔超平面的距离 if max_dist < temp_dist: return result(nearest, dist, nodes_visited) # ------- #计算分隔点的欧式距离 temp_dist = sqrt(sum((p1-p2)**2 for p1, p2 in zip(pivot, target)))#计算目标点到邻近节点的Distance if temp_dist < dist: nearest = pivot #更新最近点 dist = temp_dist #更新最近距离 max_dist = dist #更新超球体的半径 print("输出数据:" , nearest, dist, max_dist) # 检查另一个子结点对应的区域是否有更近的点 temp2 = travel(further_node, target, max_dist) nodes_visited += temp2.nodes_visited if temp2.nearest_dist < dist: # 如果另一个子结点内存在更近距离 nearest = temp2.nearest_point # 更新最近点 dist = temp2.nearest_dist # 更新最近距离 return result(nearest, dist, nodes_visited) return travel(tree.root, point, float("inf")) # 从根节点开始递归
# 数据测试 data= [[2,3],[5,4],[9,6],[4,7],[8,1],[7,2]] kd=KdTree(data) preorder(kd.root)
结果:
# 导包 from time import clock from random import random # 产生一个k维随机向量,每维分量值在0~1之间 def random_point(k): return [random() for _ in range(k)] # 产生n个k维随机向量 def random_points(k, n): return [random_point(k) for _ in range(n)]
# 输入数据进行测试 ret = find_nearest(kd, [3,4.5]) print (ret)
结果:
Result_tuple(nearest_point=[2, 3], nearest_dist=1.8027756377319946, nodes_visited=4)
N = 400000 t0 = clock() kd2 = KdTree(random_points(3, N)) # 构建包含四十万个3维空间样本点的kd树 ret2 = find_nearest(kd2, [0.1,0.5,0.8]) # 四十万个样本点中寻找离目标最*的点 t1 = clock() print ("time: ",t1-t0, "s") print (ret2)
结果:
7.299844505209247 s
Result_tuple(nearest_point=[0.10505669630674175, 0.49542598718931097, 0.803316691954
3026], nearest_dist=0.007582362181450973, nodes_visited=53)
五、实验小结
本次实验,实现了曼哈顿距离、欧氏距离、闵式距离算法,并测试了算法正确性。理解了K-近邻算法原理。
它的工作原理是:存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系。
输入没有标签的新数据后,将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似数据(最近邻)的分类标签。
一般来说,我们只选择样本数据集中前k个最相似的数据,这就是k-近邻算法中k的出处,通常k是不大于20的整数。最后,选择k个最相似数据中出现次数最多的分类,作为新数据的分类。