1. GlueMiniSatPPT-nabeshima.pdf

A fast SAT solver with an aggressive acquiring strategy of glue clauses

早期求解器资料,涉及基本概念、BCP工作示意图、冲突分析蕴含图的图示。

也可以参见另一位网友整理相关基本概念的图片:https://blog.csdn.net/weixin_43791787/article/details/134269793

2. 了解SAT编码以及SAT求解器可以应用的领域

3. 基本的数字化特征的相关文献也可以从这篇文献中对应去找。

 

文献:(该文献在2023年做了进一步更新)

On the Structure of the Boolean Satisfiability Problem: A Survey

第6节:

Based on the large body of research, the proposed structural measures related to the SAT formula are based on properties related directly to the CNF formula (e.g. [496579110111]) or a graph encoding of it (e.g. [1012154467103]). However, the success of SAT is not just restricted to the CNF formula. Today, advances in SAT have revealed the ability of modern solvers to handle formulas in the abundance of parity (xor) constraints [98]. Moreover, SAT has been successfully applied in many practical areas, including software model checking [57], knowledge-compilation [29], and bioinformatics [74], among others. Thus, investigating the structure of SAT based on other encoding is an open research area.

 

第3.1.1节

The hardness of the generated benchmarks in Table 1 were attested based on either number of DP calls [78], number of branches [14], average number of nodes in proof tree [18], CPU time [1384], the number of backtracks [62], or number of conflicts [45]. The experiments of Newsham et al. [84] and Zulkoski et al. [110111] concluded that traditional factors such as the number of variables, clauses, or the clause-to-variable ratio of industrial instances, in particular, do not correlate with CDCL based solver performance.

 

对应参考文献

EFERENCES

  1. [1]2002. SAT Competitions. http://www.satcompetition.org. (2002).Google Scholar
  2. [2]2021. SATsolvercomplexity group. DOI: https://satsolvercomplexity.github.io/hcs/data. (2021).Google Scholar
  3. [3]Achlioptas Dimitris. 2000. Setting 2 variables at a time yields a new lower bound for random 3-SAT (extended abstract). In Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing (STOC’00)Association for Computing Machinery, New York, NY, USA, 28–37. DOI:Google ScholarDigital Library
  4. [4]Achterberg Tobias, Koch Thorsten, and Martin Alexander. 2006. MIPLIB 2003. Operations Research Letters 34, 4 (2006), 361–372. DOI:Google ScholarDigital Library
  5. [5]Aha David W., Kibler Dennis, and Albert Marc K.. 1991. Instance-based learning algorithms. Machine Learning 6, 1 (01 Jan 1991), 7–66. DOI:Google ScholarCross Ref
  6. [6]Albert Réka, Jeong Hawoong, and Barabási Albert-László. 1999. Internet: Diameter of the world-wide web. Nature 401 (1999), 130–131.Google ScholarCross Ref
  7. [7]Ansótegui Carlos, Bonet Maria, Giráldez-Cru Jesús, and Levy Jordi. 2017. Structure features for SAT instances classification. J. Applied Logic 23 (2017), 27–39.Google ScholarCross Ref
  8. [8]Ansótegui Carlos, Bonet Maria Luisa, Giráldez-Cru Jesús, and Levy Jordi. 2014. The fractal dimension of SAT formulas. In Automated ReasoningDemri Stéphane, Kapur Deepak, and Weidenbach Christoph (Eds.). Springer International Publishing, Cham, 107–121.Google Scholar
  9. [9]Ansótegui Carlos, Bonet Maria Luisa, Giráldez-Cru Jesús, and Levy Jordi. 2015. On the classification of industrial SAT families. In Artificial Intelligence Research and Development - Proceedings of the 18th International Conference of the Catalan Association for Artificial Intelligence, Valencia, Catalonia, Spain, October 21–23, 2015.163–172. DOI:Google ScholarCross Ref
  10. [10]Ansótegui C., Bonet M. L., Giráldez-Cru Jesús, and Levy Jordi. 2019. Community structure in industrial SAT instances. Journal of Artificial Intelligence Research 66 (2019), 443–472.Google ScholarCross Ref
  11. [11]Ansótegui Carlos, Bonet Maria Luisa, and Levy Jordi. 2008. Random SAT instances à la carte. In Proceedings of the 11th International Conference of the Catalan Association for Artificial Intelligence (Frontiers in Artificial Intelligence and Applications), Vol. 184. IOS Press, 109–117.Google Scholar
  12. [12]Ansótegui Carlos, Bonet María Luisa, and Levy Jordi. 2009. On the structure of industrial SAT instances. In Principles and Practice of Constraint Programming - CP 200Gent Ian P. (Ed.). Springer Berlin, Berlin, 127–141.Google Scholar
  13. [13]Ansótegui Carlos, Bonet Maria Luisa, and Levy Jordi. 2009. Towards industrial-like random SAT instances. In IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena, California, USA, July 11-17, 2009387–392. http://ijcai.org/Proceedings/09/Papers/072.pdfGoogle Scholar
  14. [14]Ansótegui Carlos, Bonet María Luisa, Levy Jordi, and Manyà Felip. 2008. Measuring the hardness of SAT instances. In Proceedings of the 23rd National Conference on Artificial Intelligence - Volume 1 (AAAI’08)AAAI Press, 222–228. http://dl.acm.org/citation.cfm?id=1619995.1620032.Google ScholarDigital Library
  15. [15]Ansótegui Carlos, Giráldez-Cru Jesús, and Levy Jordi. 2012. The community structure of SAT formulas. In Theory and Applications of Satisfiability Testing–SAT 2012Cimatti Alessandro and Sebastiani Roberto (Eds.). Springer Berlin, Berlin, 410–423.Google Scholar
  16. [16]Audemard Gilles, Hoessen Benoît, Jabbour Saïd, Lagniez Jean-Marie, and Piette Cédric. 2012. Revisiting clause exchange in parallel SAT solving. In Theory and Applications of Satisfiability Testing–SAT 2012Cimatti Alessandro and Sebastiani Roberto (Eds.). Springer Berlin, Berlin, 00–213.Google Scholar
  17. [17]Audemard Gilles and Simon Laurent. 2009. Predicting learnt clauses quality in modern SAT solvers. In Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI’09)Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 399–404. http://dl.acm.org/citation.cfm?id=1661445.1661509Google ScholarDigital Library
  18. [18]Béjar Ramón and Manyà Felip. 1999. Phase transitions in the regular random 3-SAT problem. In Foundations of Intelligent SystemsRaś Zbigniew W. and Skowron Andrzej (Eds.). Springer Berlin, Berlin, 292–300.Google ScholarCross Ref
  19. [19]Biere Armin. 2008. PicoSAT essentials. JSAT 4 (2008), 75–97.Google Scholar
  20. [20]Biere Armin. 2009. Pre,icoSAT@SC’09. (2009).Google Scholar
  21. [21]Biere Armin and Sinz Carsten. 2006. Decomposing SAT problems into connected components. JSAT 2, 1–4 (2006), 201–208.Google Scholar
  22. [22]Blondel Vincent D., Guillaume Jean-Loup, Lambiotte Renaud, and Lefebvre Etienne. 2008. Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008, 10 (Oct 2008), P10008. DOI:Google ScholarCross Ref
  23. [23]Böhm Max and Speckenmeyer Ewald. 1996. A fast parallel SAT-solver — efficient workload balancing. Annals of Mathematics and Artificial Intelligence 17, 2 (01 Sep 1996), 381–400. DOI:Google ScholarCross Ref
  24. [24]Breiman Leo. 2001. Random forests. Machine Learning 45, 1 (01 Oct 2001), 5–32. DOI:Google ScholarDigital Library
  25. [25]Cheeseman Peter, Kanefsky Bob, and Taylor William M.. 1991. Where the really hard problems are. In Proceedings of the 12th International Joint Conference on Artificial Intelligence - Volume 1 (IJCAI’91)Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 331–337. http://dl.acm.org/citation.cfm?id=1631171.1631221.Google ScholarDigital Library
  26. [26]Chvatal V. and Reed B.. 1992. Mick gets some (the odds are on his side) (Satisfiability). In Proceedings of the 33rd Annual Symposium on Foundations of Computer Science (SFCS’92)IEEE Computer Society, USA, 620–627. DOI:Google ScholarDigital Library
  27. [27]Cleary John G. and Trigg Leonard E.. 1995. K*: An instance-based learner using an entropic distance measure. In Proceedings of the Twelfth International Conference on Machine Learning (ICML’95)Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 108–114. http://dl.acm.org/citation.cfm?id=3091622.3091636Google ScholarCross Ref
  28. [28]Cohen William W.. 1995. Fast effective rule induction. In Proceedings of the Twelfth International Conference on Machine Learning, Tahoe City, California, USA, July 9–12, 1995115–123.Google ScholarCross Ref
  29. [29]Darwiche Adnan. 2004. New advances in compiling CNF to decomposable negation normal form. In Proceedings of the 16th European Conference on Artificial Intelligence (ECAI’04)IOS Press, Amsterdam, The Netherlands, The Netherlands, 318–322. http://dl.acm.org/citation.cfm?id=3000001.3000069Google ScholarDigital Library
  30. [30]Dilkina Bistra N., Gomes Carla P., Malitsky Yuri, Sabharwal Ashish, and Sellmann Meinolf. 2009. Backdoors to combinatorial optimization: Feasibility and optimality. In Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, 6th International Conference, CPAIOR 2009, Pittsburgh, PA, USA, May 27–31, 2009, Proceedings56–70. DOI:Google ScholarDigital Library
  31. [31]Dilkina Bistra N., Gomes Carla P., and Sabharwal Ashish. 2009. Backdoors in the context of learning. In SAT (Lecture Notes in Computer Science), Vol. 5584. Springer, 73–79.Google Scholar
  32. [32]Dubois O. and Boufkhad Y.. 1997. A general upper bound for the satisfiability threshold of randomr-SAT formulae. Journal of Algorithms 24, 2 (1997), 395–420. DOI:Google ScholarDigital Library
  33. [33]Dubois Olivier, Boufkhad Yacine, and Mandler Jacques. 2000. Typical random 3-SAT formulae and the satisfiability threshold. In Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’00)Society for Industrial and Applied Mathematics, USA, 126–127.Google ScholarDigital Library
  34. [34]Dubois Olivier and Dequen Gilles. 2001. A backbone-search heuristic for efficient solving of hard 3-SAT formulae. In Proceedings of the 17th International Joint Conference on Artificial Intelligence - Volume 1 (IJCAI’01)Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 248–253. http://dl.acm.org/citation.cfm?id=1642090.1642124.Google ScholarDigital Library
  35. [35]Eén Niklas and Sörensson Niklas. 2003. An extensible SAT-solver. In SAT (Lecture Notes in Computer Science)Giunchiglia Enrico and Tacchella Armando (Eds.), Vol. 2919. Springer, 502–518.Google Scholar
  36. [36]Fox Maria and Long Derek. 2011. The 3rd international planning competition: Results and analysis. CoRR abs/1106.5998 (2011).Google Scholar
  37. [37]Frank Eibe, Wang Yong, Inglis Stuart, Holmes Geoff, and Witten Ian H.. 1998. Using model trees for classification. Machine Learning 32 (1998), 63–76.Google ScholarDigital Library
  38. [38]Freeman Linton C.. 1977. A set of measures of centrality based on betweenness. Sociometry 40, 1 (1977), 35–41. http://www.jstor.org/stable/3033543.Google ScholarCross Ref
  39. [39]Freeman Linton C.. 1979. Centrality in social networks: Conceptual clarification. Social Networks 1, 3 (1979), 215–239. DOI:Google ScholarCross Ref
  40. [40]Frieze Alan M. and Suen Stephen. 1996. Analysis of two simple heuristics on a random instance of k-SAT. J. Algorithms 20, 2 (1996), 312–355. DOI:Google ScholarDigital Library
  41. [41]Ganian Robert and Szeider Stefan. 2015. Community structure inspired algorithms for SAT and #SAT. In Theory and Applications of Satisfiability Testing–SAT 2015Heule Marijn and Weaver Sean (Eds.). Springer International Publishing, 223–237.Google Scholar
  42. [42]Gent Ian Philip and Walsh Toby. 1994. The SAT Phase TransitionDepartment of Artificial Intelligence, University of Edinburgh.Google Scholar
  43. [43]Giráldez-Cru Jesús and Levy Jordi. 2015. A modularity-based random SAT instances generator. In Proceedings of the 24th International Conference on Artificial Intelligence (IJCAI’15)AAAI Press, 1952–1958. http://dl.acm.org/citation.cfm?id=2832415.2832520.Google ScholarDigital Library
  44. [44]Giráldez-Cru Jesús and Levy Jordi. 2016. Generating SAT instances with community structure. Artif. Intell. 238, C (Sep 2016), 119–134. DOI:Google ScholarDigital Library
  45. [45]Giráldez-Cru Jesús and Levy Jordi. 2017. Locality in random SAT instances. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17638–644. DOI:Google ScholarCross Ref
  46. [46]Goerdt A.. 1996. A threshold for unsatisfiability. In SPAA 1996.Google Scholar
  47. [47]Gomes Carla P., Selman Bart, Crato Nuno, and Kautz Henry A.. 2000. Heavy-tailed phenomena in satisfiability and constraint satisfaction problems. J. Autom. Reasoning 24, 1/2 (2000), 67–100. DOI:Google ScholarDigital Library
  48. [48]Gomes Carla P., Selman Bart, and Kautz Henry A.. 1998. Boosting combinatorial search through randomization. In Proceedings of the Fifteenth National Conference on Artificial Intelligence and Tenth Innovative Applications of Artificial Intelligence Conference, AAAI 98, IAAI 98, July 26–30, 1998, Madison, Wisconsin, USA.431–437. http://www.aaai.org/Library/AAAI/1998/aaai98-061.php.Google Scholar
  49. [49]Gregory Peter, Fox Maria, and Long Derek. 2008. A new empirical study of weak backdoors. In Principles and Practice of Constraint ProgrammingStuckey Peter J. (Ed.). Springer Berlin, Berlin, 618–623.Google Scholar
  50. [50]Guo Long, Hamadi Youssef, Jabbour Said, and Sais Lakhdar. 2010. Diversification and intensification in parallel SAT solving. In Principles and Practice of Constraint Programming–CP 2010Cohen David (Ed.). Springer Berlin, Berlin, 252–265.Google Scholar
  51. [51]Guo Shaohua, He Junru, Song Xueting, and Liu Weiting. 2019. Backbone solving algorithm based on heuristic thinking. In Proceedings of the 3rd International Conference on Machine Learning and Soft Computing (ICMLSC 2019)Association for Computing Machinery, New York, NY, USA, 44–48. DOI:Google ScholarDigital Library
  52. [52]Hemaspaandra Lane A. and Narváez David E.. 2019. Existence versus exploitation: The opacity of backdoors and backbones under a weak assumption. In SOFSEM 2019: Theory and Practice of Computer ScienceCatania Barbara, Královič Rastislav, Nawrocki Jerzy, and Pighizzini Giovanni (Eds.). Springer International Publishing, Cham, 247–259.Google Scholar
  53. [53]Heule Marijn and Maaren Hans van. 2008. Whose side are you on? Finding solutions in a biased search-tree. JSAT 4, 2–4 (2008), 117–148.Google Scholar
  54. [54]Hogg Tad. 1996. Refining the phase transition in combinatorial search. Artificial Intelligence 81, 1-2 (Mar 1996), 127–154. DOI:Google ScholarCross Ref
  55. [55]Hoos H. and Stutzle T.. 2000. SATLIB: An online resource for research on SAT. In SAT2000Gent H. van Maaren I. P. and Walsh T. (Eds.). IOS Press, 283–292.Google Scholar
  56. [56]Hoos Holger H. and Stützle Thomas. 2000. SATLIB: An online resource for research on SAT. In SAT283–292. http://www.satlib.orgGoogle Scholar
  57. [57]Jackson D., Schechter I., and Shlyakhter I.. 2000. Alcoa: The Alloy constraint analyzer. In Proceedings of the 2000 International Conference on Software Engineering. ICSE 2000 the New Millennium730–733. DOI:Google ScholarDigital Library
  58. [58]Jamali Sima and Mitchell David. 2017. Improving SAT solver performance with structure-based preferential bumping. In GCAI 2017. 3rd Global Conference on Artificial Intelligence (EPiC Series in Computing)Benzmüller Christoph, Lisetti Christine, and Theobald Martin (Eds.), Vol. 50. EasyChair, 175–187. DOI:Google ScholarCross Ref
  59. [59]Jamali Sima and Mitchell David. 2018. Centrality-based improvements to CDCL heuristics. In Theory and Applications of Satisfiability Testing - SAT 2018-21st International Conference, SAT 2018, Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK, July 9–12, 2018, Proceedings122–131. DOI:Google ScholarCross Ref
  60. [60]John George H. and Langley Pat. 1995. Estimating continuous distributions in Bayesian classifiers. In Proceedings of the Eleventh Conference on Uncertainty in Artificial IntelligenceMorgan Kaufmann, San Mateo, 338–345.Google ScholarDigital Library
  61. [61]Kadioglu Serdar, Malitsky Yuri, Sellmann Meinolf, and Tierney Kevin. 2010. ISAC–instance-specific algorithm configuration. In Proceedings of the 2010 Conference on ECAI 2010: 19th European Conference on Artificial IntelligenceIOS Press, Amsterdam, The Netherlands, The Netherlands, 751–756. http://dl.acm.org/citation.cfm?id=1860967.1861114.Google ScholarDigital Library
  62. [62]Kambhampati Soumya C. and Liu Thomas. 2013. Phase transition and network structure in realistic SAT problems. In Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence (AAAI’13)AAAI Press, 1619–1620. http://dl.acm.org/citation.cfm?id=2891460.2891696.Google ScholarDigital Library
  63. [63]Katsirelos George and Simon Laurent. 2012. Eigenvector centrality in industrial SAT instances. In CP (Lecture Notes in Computer Science), Vol. 7514. Springer, 348–356.Google Scholar
  64. [64]Kautz Henry and Selman Bart. 1999. Unifying SAT-based and graph-based planning. In Proceedings of the 16th International Joint Conference on Artifical Intelligence - Volume 1 (IJCAI’99)Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 318–325. http://dl.acm.org/citation.cfm?id=1624218.1624265.Google ScholarDigital Library
  65. [65]Kilby Philip, Slaney John, Thiébaux Sylvie, and Walsh Toby. 2005. Backbones and backdoors in satisfiability. In Proceedings of the 20th National Conference on Artificial Intelligence - Volume 3 (AAAI’05)AAAI Press, 1368–1373. http://dl.acm.org/citation.cfm?id=1619499.1619553.Google ScholarDigital Library
  66. [66]Cessie S. le and Houwelingen J. C. van. 1992. Ridge estimators in logistic regression. Applied Statistics 41, 1 (1992), 191–201.Google ScholarCross Ref
  67. [67]Li Chunxiao, Chung Jonathan, Mukherjee Soham, Vinyals Marc, Fleming Noah, Kolokolova Antonina, Mu Alice, and Ganesh Vijay. 2021. On the hierarchical community structure of practical Boolean formulas. In Theory and Applications of Satisfiability Testing–SAT 2021Li Chu-Min and Manyà Felip (Eds.). Springer International Publishing, Cham, 359–376.Google Scholar
  68. [68]Li Chu Min and Anbulagan Anbulagan. 1997. Heuristics based on unit propagation for satisfiability problems. In Proceedings of the 15th International Joint Conference on Artificial Intelligence - Volume 1 (IJCAI’97)Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 366–371. http://dl.acm.org/citation.cfm?id=1624162.1624216.Google Scholar
  69. [69]Li Zijie and Beek Peter van. 2011. Finding small backdoors in SAT instances. In Advances in Artificial IntelligenceButz Cory and Lingras Pawan (Eds.). Springer Berlin, Berlin, 269–280.Google Scholar
  70. [70]Liang Jia Hui, Ganesh Vijay, Poupart Pascal, and Czarnecki Krzysztof. 2016. Learning rate based branching heuristic for SAT solvers. In Theory and Applications of Satisfiability Testing–SAT 2016Creignou Nadia and Berre Daniel Le (Eds.). Springer International Publishing, Cham, 123–140.Google Scholar
  71. [71]Liang Jia Hui, Ganesh Vijay, Zulkoski Ed, Zaman Atulan, and Czarnecki Krzysztof. 2015. Understanding VSIDS branching heuristics in conflict-driven clause-learning SAT solvers. In Haifa Verification Conference (Lecture Notes in Computer Science), Vol. 9434. Springer, 225–241.Google ScholarCross Ref
  72. [72]Liang Jia Hui, Oh Chanseok, Ganesh Vijay, and Czarnecki Krzysztof. 2016. MapleCOMSPS, MapleCOMSPS LRB, MapleCOMSPS CHB. In SAT Competition 2016: Solver and Benchmark Descriptions, Vol. B-2016-1. 52–53.Google Scholar
  73. [73]Long Derek, Kautz Henry A., Selman Bart, Bonet Blai, Geffner Hector, Koehler Jana, Brenner Michael, Hoffmann Jörg, Rittinger Frank, Anderson Corin R., Weld Daniel S., Smith David E., and Fox Maria. 2000. The AIPS-98 planning competition. AI Magazine 21, 2 (2000), 13–33.Google Scholar
  74. [74]Lynce Inês and Marques-Silva João. 2006. Efficient haplotype inference with Boolean satisfiability. In Proceedings of the 21st National Conference on Artificial Intelligence - Volume 1AAAI Press, 104–109. http://portal.acm.org/citation.cfm?id=1597538.1597556.Google ScholarDigital Library
  75. [75]Marques-Silva João, Janota Mikolás, and Lynce Inês. 2010. On computing backbones of propositional theories. In ECAI 2010-19th European Conference on Artificial Intelligence, Lisbon, Portugal, August 16-20, 2010, Proceedings (Frontiers in Artificial Intelligence and Applications)Coelho Helder, Studer Rudi, and Wooldridge Michael J. (Eds.), Vol. 215. IOS Press, 15–20. http://www.booksonline.iospress.nl/Content/View.aspx?piid=17706.Google Scholar
  76. [76]Marques-Silva J. P. and Sakallah K. A.. 1999. GRASP: A search algorithm for propositional satisfiability. IEEE Trans. Comput. 48, 5 (May 1999), 506–521. DOI:Google ScholarDigital Library
  77. [77]Mateescu Robert. 2011. Treewidth in Industrial SAT Benchmarks. (February 2011).Google Scholar
  78. [78]Mitchell David, Selman Bart, and Levesque Hector. 1992. Hard and easy distributions of SAT problems. In Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI’92)AAAI Press, 459–465. http://dl.acm.org/citation.cfm?id=1867135.1867206Google ScholarDigital Library
  79. [79]Monasson R., Zecchina Riccardo, Kirkpatrick Scott, Selman Bart, and Troyansky L.. 1999. Determining computational complexity from characteristic’phase transitions’. Nature 400 (07 1999), 133–137. DOI:Google ScholarCross Ref
  80. [80]Moskewicz M. W., Madigan C. F., Zhao Y., Zhang L., and Malik S.. 2001. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232)530–535. DOI:Google ScholarDigital Library
  81. [81]Mull Nathan, Fremont Daniel J., and Seshia Sanjit A.. 2016. On the hardness of SAT with community structure. In Theory and Applications of Satisfiability Testing–SAT 2016Creignou Nadia and Berre Daniel Le (Eds.). Springer International Publishing, Cham, 141–159.Google Scholar
  82. [82]Newman Micaleah and Girvan Michelle. 2004. Finding and evaluating community structure in networks. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics 69 2 Pt 2 (2004), 026113.Google ScholarCross Ref
  83. [83]Newman M. E. J.. 2004. Fast algorithm for detecting community structure in networks. Phys. Rev. E 69 (Jun 2004), 066133. Issue 6. DOI:Google ScholarCross Ref
  84. [84]Newsham Zack, Ganesh Vijay, Fischmeister Sebastian, Audemard Gilles, and Simon Laurent. 2014. Impact of community structure on SAT solver performance. In Theory and Applications of Satisfiability Testing–SAT 2014Sinz Carsten and Egly Uwe (Eds.). Springer International Publishing, Cham, 252–268.Google Scholar
  85. [85]Czarnecki Zach Newsham, William Lindsay, Vijay Ganesh, Jia Hui Liang, Sebastian Fischmeister, and Krzysztof. 2015. SATGraf: Visualizing the evolution of SAT formula structure in solvers. In Theory and Applications of Satisfiability Testing–SAT 2015Marijn Heule and Sean Weaver (Ed.). Springer International Publishing, Cham, 62–70.Google Scholar
  86. [86]Parkes Andrew J.. 1997. Clustering at the phase transition. In In Proc. of the 14th Nat. Conf. on AIAAAI Press / The MIT Press, 340–345.Google Scholar
  87. [87]Pipatsrisawat Knot and Darwiche Adnan. 2007. A lightweight component caching scheme for satisfiability solvers. In Theory and Applications of Satisfiability Testing–SAT 2007Marques-Silva João and Sakallah Karem A. (Eds.). Springer Berlin, Berlin, 294–299.Google Scholar
  88. [88]Platt J.. 1998. Fast training of support vector machines using sequential minimal optimization. In Advances in Kernel Methods - Support Vector LearningSchoelkopf B., Burges C., and Smola A. (Eds.). MIT Press. http://research.microsoft.com/~jplatt/smo.htmlGoogle ScholarDigital Library
  89. [89]Previti Alessandro and Järvisalo Matti. 2018. A preference-based approach to backbone computation with application to argumentation. In Proceedings of the 33rd Annual ACM Symposium on Applied Computing (SAC’18)Association for Computing Machinery, New York, NY, USA, 896–902. DOI:Google ScholarDigital Library
  90. [90]Quinlan J. Ross. 1993. C4.5: Programs for Machine LearningMorgan Kaufmann Publishers Inc., San Francisco, CA, USA.Google ScholarDigital Library
  91. [91]Robertson Neil and Seymour Paul D.. 1983. Graph minors. I. Excluding a forest. J. Comb. Theory, Ser. B 35, 1 (1983), 39–61. DOI:Google ScholarCross Ref
  92. [92]Selman Bart, Kautz Henry, and McAllester David. 1997. Ten challenges in propositional reasoning and search. In Proceedings of the 15th International Joint Conference on Artificial Intelligence - Volume 1 (IJCAI’97)Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 50–54. http://dl.acm.org/citation.cfm?id=1624162.1624170Google Scholar
  93. [93]Silva João P. Marques and Sakallah Karem A.. 1996. GRASP–a new search algorithm for satisfiability. In Proceedings of the 1996 IEEE/ACM International Conference on Computer-aided Design (ICCAD’96)IEEE Computer Society, Washington, DC, USA, 220–227. http://dl.acm.org/citation.cfm?id=244522.244560Google Scholar
  94. [94]Simon Laurent and Chatalic Philippe. 2001. SatEx: A web-based framework for SAT experimentation. Electronic Notes in Discrete Mathematics 9 (2001), 129–149.Google ScholarCross Ref
  95. [95]Slater Andrew. 2002. Modelling more realistic SAT problems. In AI 2002: Advances in Artificial IntelligenceMcKay Bob and Slaney John (Eds.). Springer Berlin, Berlin, 591–602.Google Scholar
  96. [96]Song Chaoming, Havlin Shlomo, and Makse Hernán A.. 2005. Self-similarity of complex networks. Nature 433 (2005), 392–395.Google ScholarCross Ref
  97. [97]Sonobe Tomohiro, Kondoh Shuya, and Inaba Mary. 2014. Community branching for parallel portfolio SAT solvers. In SAT (Lecture Notes in Computer Science), Vol. 8561. Springer, 188–196.Google Scholar
  98. [98]Soos Mate, Nohl Karsten, and Castelluccia Claude. 2009. Extending SAT solvers to cryptographic problems. In SAT (Lecture Notes in Computer Science), Vol. 5584. Springer, 244–257.Google Scholar
  99. [99]Spearman C.. 1904. The proof and measurement of association between two things. American Journal of Psychology 15 (1904), 88–103.Google ScholarCross Ref
  100. [100]Tomohiro Sonobe. 2016. CBPeneLoPe2016, CCSPeneLoPe2016, gulch entering the SAT competition 2016. In Proc. of SAT Competition 2014–Solver and Benchmark Descriptions (Department of Computer Science Series of Publications B)Balyo Tomáš, Heule Marijn, and Järvisalo Matti (Eds.), Vol. B-2016-1. University of Helsinki, 25–26.Google Scholar
  101. [101]Tomohiro Sonobe and Kondoh Shuya. 2014. CBPeneLoPe and ParaCIRMiniSAT entering the SAT competition 2014. In Proc. of SAT Competition 2014–Solver and Benchmark Descriptions (Department of Computer Science Series of Publications B)Balyo Tomáš, Heule Marijn, and Järvisalo Matti (Eds.), Vol. B-2014-2. University of Helsinki, 14–15.Google Scholar
  102. [102]Ganesh Jia Hui Liang and Vijay. MapleSAT: Combining Machine Learning and Deduction in SAT solvers. ([n.d.]). https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/.Google Scholar
  103. [103]Walsh Toby. 1999. Search in a small world. In Proceedings of the 16th International Joint Conference on Artificial Intelligence - Volume 2 (IJCAI’99)Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1172–1177. http://dl.acm.org/citation.cfm?id=1624312.1624385Google ScholarDigital Library
  104. [104]Watts Duncan J. and Strogatz Steven H.. 1998. Collective dynamics of /‘small-world/’ networks. Nature 393, 6684 (June 1998), 440–442. Google ScholarCross Ref
  105. [105]Williams Ryan, Gomes Carla, and Selman Bart. 2003. On the connections between backdoors, restarts, and heavy-tailedness in combinatorial search. Structure 23 (2003), 4.Google Scholar
  106. [106]Williams Ryan, Gomes Carla P., and Selman Bart. 2003. Backdoors to typical case complexity. In Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI’03)Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1173–1178. http://dl.acm.org/citation.cfm?id=1630659.1630827Google ScholarDigital Library
  107. [107]Xu Lin, Hutter Frank, Hoos Holger H., and Leyton-Brown Kevin. 2008. SATzilla: Portfolio-based algorithm selection for SAT. J. Artif. Int. Res. 32, 1 (June 2008), 565–606. http://dl.acm.org/citation.cfm?id=1622673.1622687Google ScholarDigital Library
  108. [108]Zhang Zaijun, Xu Daoyun, and Zhou Jincheng. 2021. A structural entropy measurement principle of propositional formulas in conjunctive normal form. Entropy 23, 3 (2021). DOI:Google ScholarCross Ref
  109. [109]Zulkoski Edward, Martins Ruben, Wintersteiger Christoph M., Liang Jia Hui, Czarnecki Krzysztof, and Ganesh Vijay. 2018. The effect of structural measures and merges on SAT solver performance. In CP (Lecture Notes in Computer Science), Vol. 11008. Springer, 436–452.Google Scholar
  110. [110]Zulkoski Edward, Martins Ruben, Wintersteiger Christoph M., Robere Robert, Liang Jia Hui, Czarnecki Krzysztof, and Ganesh Vijay. 2017. Relating complexity-theoretic parameters with SAT solver performance. CoRR abs/1706.08611 (2017).Google Scholar
  111. [111]Zulkoski Edward, Martins Ruben, Wintersteiger Christoph M., Robere Robert, Liang Jia Hui, Czarnecki Krzysztof, and Ganesh Vijay. 2018. Learning-sensitive backdoors with restarts. In CP (Lecture Notes in Computer Science), Vol. 11008. Springer, 453–469.Google Scholar

Cited By

View all
  1. Kuiter EHeß TSundermann CKrieter SThüm T and Saake GHow Easy is SAT-Based Analysis of a Feature Model?. Proceedings of the 18th International Working Conference on Variability Modelling of Software-Intensive Systems. (149-151).

    https://doi.org/10.1145/3634713.3634733

  2. Al-Yahya TMenai M and Mathkour H(2022). Boosting the Performance of CDCL-Based SAT Solvers by Exploiting Backbones and Backdoors. Algorithms. 10.3390/a15090302. 15:9. (302).

    https://www.mdpi.com/1999-4893/15/9/302

 

Index Terms

   
   
   
posted on 2023-01-01 16:35  海阔凭鱼跃越  阅读(94)  评论(0编辑  收藏  举报