业务保障部有一个需求,须要用hive实时计算上一小时的数据。比方如今是12点,我须要计算11点的数据,并且必须在1小时之后执行出来。可是他们用hive实现的时候发现就单个map任务执行都超过了1小时,根本没法满足需求,后来打电话让我帮忙优化一下,下面是优化过程:

1、hql语句:

CREATE TABLE weibo_mobile_nginx AS SELECT
	split(split(log, '`') [ 0 ], '\\|')[ 0 ] HOST,
	split(split(log, '`') [ 0 ], '\\|')[ 1 ] time,
	substr(
		split(
			split(split(log, '`') [ 2 ], '\\?')[ 0 ], ' '
		)[ 0 ], 2
	)request_type,
	split(
		split(split(log, '`') [ 2 ], '\\?')[ 0 ], ' '
	)[ 1 ] interface,
	regexp_extract(
		log,
		’.*& ua =[^ _ ]* __([^ _ ]*)__([^ _ ]*)__([^ _ ]*)__<span style="font-family: Arial, Helvetica, sans-serif;">[^&]*</span>’,
		3
	)version,
	regexp_extract(
		log,
		’.*& ua =[^ _ ]* __([^ _ ]*)__([^ _ ]*)__([^ _ ]*)__.* ',1) systerm,regexp_extract(log,’.*&networktype=([^&%]*).*',
		1
	)net_type,
	split(log, '`')[ 4 ] STATUS,
	split(log, '`')[ 5 ] client_ip,
	split(log, '`')[ 6 ] uid,
	split(log, '`')[ 8 ] request_time,
	split(log, '`')[ 12 ] request_uid,
	split(log, '`')[ 13 ] http_host,
	split(log, '`')[ 15 ] upstream_response_time,
	split(log, '`')[ 16 ] idc
FROM
	ods_wls_wap_base_orig
WHERE
	dt = '20150311'
AND HOUR = '08'
AND(
	split(log, '`')[ 13 ]= 'api.weibo.cn'
	OR split(log, '`')[ 13 ]= 'mapi.weibo.cn’);
事实上这个hql非常easy,从一个仅仅有一列数据的表ods_wls_wap_base_orig中获取数据,然后对每一行数据进行split或者正則表達式匹配得到须要的字段信息。最后通过输出的数据创建weibo_mobile_nginx表。

当中表ods_wls_wap_base_orig的一行数据格式例如以下:

web043.mweibo.yhg.sinanode.com|[11/Mar/2015:00:00:01 +0800]`-`"GET /2/remind/unread_count?v_f=2&c=android&wm=9847_0002&remind_version=0&with_settings=1&unread_message=1&from=1051195010&lang=zh_CN&skin=default&with_page_group=1&i=4acbdd0&s=6b2cd11c&gsid=4uQ15a2b3&ext_all=0&idc=&ua=OPPO-R8007__weibo__5.1.1__android__android4.3&oldwm=9893_0028 HTTP/1.1"`"R8007_4.3_weibo_5.1.1_android"`200`[121.60.78.23]`3226234350`"-"`0.063`351`-`121.60.78.23`1002792675011956002`api.weibo.cn`-`0.063`yhg 20150311    00

仅仅有1列,列名是log。

2、既然hql实现非常慢,我第一次优化的尝试就是写mapreduce

map代码例如以下:

public class Map extends Mapper<LongWritable, Text, Text, Text> {

  private Text outputKey = new Text();
  private Text outputValue = new Text();

  Pattern p_per_client = Pattern
      .compile(".*&ua=[^_]*__([^_]*)__([^_]*)__([^_]*)__[^&]*");
  Pattern net_type_parent = Pattern.compile(".*&networktype=([^&%]*).*");

  public void map(LongWritable key, Text value, Context context)
      throws IOException, InterruptedException {

    String[] arr = value.toString().split("`");
    if (arr[13].equals("api.weibo.cn") || arr[13].equals("mapi.weibo.cn")) {
      Matcher matcher = p_per_client.matcher(value.toString());
      String host = "";
      String time = "";
      String request_type = "";
      String interface_url = "";
      String version = "";
      String systerm = "";
      String net_type = "";
      String status = "";
      String client_ip = "";
      String uid = "";
      String request_time = "0";
      String request_uid = "";
      String http_host = "";
      String upstream_response_time = "0";
      String idc = "";

      host = arr[0].split("\\|")[0];
      time = arr[0].split("\\|")[1];
      request_type = arr[2].split("\\?")[0].split(" ")[0].substring(1);
      interface_url = arr[2].split("\\?")[0].split(" ")[1];

      if (matcher.find()) {
        version = matcher.group(1);
        systerm = matcher.group(2);
      }

      Matcher matcher_net = net_type_parent.matcher(value.toString());
      if (matcher_net.find()) {
        net_type = matcher_net.group(1);
      }

      status = arr[4];
      client_ip = arr[5];
      uid = arr[6];
      if (!arr[8].equals("-")) {
        request_time = arr[8];
      }
      request_uid = arr[12];
      http_host = arr[13];
      if (!arr[15].equals("-")) {
        upstream_response_time = arr[15];
      }
      idc = arr[16];

      outputKey.set(host + "\t" + time + "\t" + request_type + "\t"
          + interface_url + "\t" + version + "\t" + systerm + "\t" + net_type
          + "\t" + status + "\t" + client_ip + "\t" + uid + "\t" + request_uid
          + "\t" + http_host + "\t" + idc);
      outputValue.set(request_time + "\t" + upstream_response_time);

      context.write(outputKey, outputValue);
    }

  }

java代码事实上也非常easy,这里不多说。打包提交job。结果map最慢的执行了40分钟。平均map执行时间达到30分钟,尽管整个job在1小时内完毕了。可是也非常慢。这个问题看来不是用java改写就能好的问题。

3、最后检測正則表達式

改用java实现的mapreduce执行也非常慢。看来问题还是其它原因。我看了一下hql中的正則表達式。改动了几个地方:

原来的:

regexp_extract(
                log,
                ’.*& ua =[^ _ ]* __([^ _ ]*)__([^ _ ]*)__([^ _ ]*)__[^&]*’,
                3
        )version,
        regexp_extract(
                log,
                ’.*& ua =[^ _ ]* __([^ _ ]*)__([^ _ ]*)__([^ _ ]*)__.* ',1)
        systerm,
regexp_extract(log,’.*&networktype=([^&%]*).*',
                1
        )net_type,
改动后:
	regexp_extract(
		log,
		'&ua=[^_]*__[^_]*__([^_]*)__[^_]*__',
		1
	)version,
	regexp_extract(
		log,
		'&ua=[^_]*__[^_]*__[^_]*__([^_]*)__',
		1
	)systerm,
	regexp_extract(
		log,
		'&networktype=([^&%]*)',
		1
	)net_type,
事实上匹配目标非常明白,所以我把正則表達式前后的".*"去掉了。同一时候去掉了不是必需的group。索引都改成了1。

java代码的正則表達式也进行了改动:

Pattern p_per_client = Pattern
      .compile("&ua=[^_]*__[^_]*__([^_]*)__([^_]*)__");
  Pattern net_type_parent = Pattern.compile("&networktype=([^&%]*).");
分别提交測试了一下,速度ss的。改动后的hql和mapreduce整个作业6分钟执行完毕。平均map执行时间2分钟。速度提升非常大,满足了他们的速度要求。

总结:

1、正則表達式最前面包括“.*”,这样在匹配的时候须要从第一个字符開始匹配。速度很很慢,假设我们匹配的目标很明白的情况下。应该去掉“.*”

2、以后遇到这样的问题的时候。一定要看看正則表達式是不是写得有问题,切记切记。



       




posted on 2017-07-13 10:55  yutingliuyl  阅读(345)  评论(0编辑  收藏  举报