首先要知道选择行列操作时顺序是无关的
用两个数组row[i],col[j]分别表示仅选择i行能得到的最大值和仅选择j列能得到的最大值
这个用优先队列维护,没选择一行(列)后将这行(列)的和减去对应的np (mp)又一次增加队列
枚举选择行的次数为i,那么选择列的次数为k - i次,ans = row[i] + col[k - i] - (k - i) * i * p;
既然顺序无关,能够看做先选择完i次行,那么每次选择一列时都要减去i * p,选择k - i次列,即减去(k - i) * i * p
//#pragma comment(linker, "/STACK:102400000,102400000") //HEAD #include <cstdio> #include <cstring> #include <vector> #include <iostream> #include <algorithm> #include <queue> #include <string> #include <set> #include <stack> #include <map> #include <cmath> #include <cstdlib> using namespace std; //LOOP #define FE(i, a, b) for(int i = (a); i <= (b); ++i) #define FED(i, b, a) for(int i = (b); i>= (a); --i) #define REP(i, N) for(int i = 0; i < (N); ++i) #define CLR(A,value) memset(A,value,sizeof(A)) //STL #define PB push_back //INPUT #define RI(n) scanf("%d", &n) #define RII(n, m) scanf("%d%d", &n, &m) #define RIII(n, m, k) scanf("%d%d%d", &n, &m, &k) #define RS(s) scanf("%s", s) #define FF(i, a, b) for(int i = (a); i < (b); ++i) #define FD(i, b, a) for(int i = (b) - 1; i >= (a); --i) #define CPY(a, b) memcpy(a, b, sizeof(a)) #define FC(it, c) for(__typeof((c).begin()) it = (c).begin(); it != (c).end(); it++) #define EQ(a, b) (fabs((a) - (b)) <= 1e-10) #define ALL(c) (c).begin(), (c).end() #define SZ(V) (int)V.size() #define RIV(n, m, k, p) scanf("%d%d%d%d", &n, &m, &k, &p) #define RV(n, m, k, p, q) scanf("%d%d%d%d%d", &n, &m, &k, &p, &q) #define WI(n) printf("%d\n", n) #define WS(s) printf("%s\n", s) #define sqr(x) x * x typedef vector <int> VI; typedef unsigned long long ULL; typedef long long LL; const int INF = 0x3f3f3f3f; const int maxn = 1010; const double eps = 1e-10; const LL MOD = 1e9 + 7; int ipt[maxn][maxn]; LL row[maxn * maxn], col[maxn * maxn]; LL rtol[maxn], ctol[maxn]; int main() { int n, m, k, p; while (~RIV(n, m, k, p)) { priority_queue<LL> r, c; int radd = 0, cadd = 0; CLR(rtol, 0), CLR(ctol, 0); FE(i, 1, n) FE(j, 1, m) { RI(ipt[i][j]); rtol[i] += ipt[i][j]; ctol[j] += ipt[i][j]; } FE(i, 1, n) r.push(rtol[i]); FE(j, 1, m) c.push(ctol[j]); row[0] = 0, col[0] = 0; FE(i, 1, k) { LL x = r.top(), y = c.top(); r.pop(), c.pop(); r.push(x - m * p); c.push(y - n * p); row[i] = row[i - 1] + x; col[i] = col[i - 1] + y; } // FE(i, 0, k) // cout << row[i] + col[k - i] <<endl; LL ans = -1e18; FE(i, 0, k) ans = max(ans, row[i] + col[k - i] - (LL)i * (k - i)* p); cout << ans << endl; } return 0; } /* 2 2 4 2 1 2 3 10 2 3 5 2 2 2 2 2 2 2 */