parallelizing jobs in python

import time
from concurrent.futures import ThreadPoolExecutor, wait
import numpy as np
def work(aa, bb):
time.sleep(np.random.rand())
print(f"working on {aa}, {bb}")
return aa + bb
with ThreadPoolExecutor(8) as executor:
# futures = []
# for ii in range(33):
# futures.append(
# executor.submit(work, ii, ii+1)
# )
futures = [executor.submit(work, ii, ii+1) for ii in range(33)]
wait(futures)
print("++++++++++++++++++++++++++++++")
for fut in futures:
print(fut.result())
print("all done.")

posted on   yusisc  阅读(7)  评论(0编辑  收藏  举报

相关博文:
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5
点击右上角即可分享
微信分享提示