parallelizing jobs in python
import time from concurrent.futures import ThreadPoolExecutor, wait import numpy as np def work(aa, bb): time.sleep(np.random.rand()) print(f"working on {aa}, {bb}") return aa + bb with ThreadPoolExecutor(8) as executor: # futures = [] # for ii in range(33): # futures.append( # executor.submit(work, ii, ii+1) # ) futures = [executor.submit(work, ii, ii+1) for ii in range(33)] wait(futures) print("++++++++++++++++++++++++++++++") for fut in futures: print(fut.result()) print("all done.")
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具