Lagrange multiplier method (拉格朗日乘数法)

The Lagrange multiplier method is used to solve the problem that find the extremum of a function z=f(x,y) , given ϕ(x,y)=0 .

simple extremum problem

To solve a simple extremum problem,

z=f(x,y)

we just need to find the (x,y) where
zx=0zy=0

By solving the simultaneous equations, we could find the (x,y)s. Then plugging in the (x,y)s into the function z = f(x,y), we find the extremum of z.

extremum problem with restricted condition

The problem is finding the extremum of

z=f(x,y)

where,
ϕ(x,y)=0

By applying Lagrange multiplier method, we define a new function, as:
F(x,y,λ)=f(x,y)+λϕ(x,y)

Then, take the partial derivatives of x,y,λ . We get Fx,Fy,Fλ . Make them be 0 .
Fx=0Fy=0Fλ=0

Three equations, three unknow variables. The equation set could be solved. By solving the equation set, we get the (x,y) , we care nothing about λ .
Then, plugging the (x,y) , just solve out, in the function z=f(x,y) , we find the extremum of z=f(x,y) with restricted condition ϕ(x,y)=0

explanation

as ϕ(x,y) always be 0 , F(x,y,λ) will always be equal to f(x,y) .

F(x,y,λ)=f(x,y)+λϕ(x,y)ϕ(x,y)=0F(x,y,λ)=f(x,y)

So F(x,y,λ) and f(x,y) have the same 3-d surface, if you thought a=F(x,y,λ) is a function in 3-d space. In fact the function F(x,y,λ) is a function in 4-d space.
What we do is going to find the extremum of the 4-d space function F(x,y,λ) . When F(x,y,λ) get its extremum, the conditions exactly fit the origin problem conditions, occasionally, luckily in fact.
Solving the simple 4-d problem solves the complex 3-d problem. “Why not solve the simple problem?”, Lagrange thought.

[MORE DETAILED EXPLANATION COMES SOON.]

reference

1 [youdaoDic]
特别的,我们学过,怎样找到直线与平面的交点,通过将参数方程带入平面方程。
And, well, we’ve learned in particular how to find where a line intersects a plane by plugging in the parametric equation into the equation of a plane.
2 拉格朗日乘数法_百度百科

posted on   yusisc  阅读(67)  评论(0编辑  收藏  举报

编辑推荐:
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5
点击右上角即可分享
微信分享提示