论numpy中matrix 和 array的区别
http://blog.csdn.net/vincentlipan/article/details/20717163
2014年03月07日 16:26:55
Numpy matrices必须是2维的,但是 numpy arrays (ndarrays) 可以是多维的(1D,2D,3D····ND). Matrix是Array的一个小的分支,包含于Array。所以matrix 拥有array的所有特性。
在numpy中matrix的主要优势是:相对简单的乘法运算符号。例如,a和b是两个matrices,那么a*b,就是矩阵积。
import numpy as np a=np.mat('4 3; 2 1') b=np.mat('1 2; 3 4') print(a) # [[4 3] # [2 1]] print(b) # [[1 2] # [3 4]] print(a*b) # [[13 20] # [ 5 8]]
matrix 和 array 都可以通过objects后面加.T
得到其转置。但是 matrix objects 还可以在后面加 .H
f得到共轭矩阵, 加 .I
得到逆矩阵。
相反的是在numpy里面arrays遵从逐个元素的运算,所以array:c 和d的c*d运算相当于matlab里面的c.*d运算。
c=np.array([[4, 3], [2, 1]]) d=np.array([[1, 2], [3, 4]]) print(c*d) # [[4 6] # [6 4]]
而矩阵相乘,则需要numpy里面的dot命令 :
print(np.dot(c,d)) # [[13 20] # [ 5 8]]
**
运算符的作用也不一样 :
print(a**2) # [[22 15] # [10 7]] print(c**2) # [[16 9] # [ 4 1]]
因为a是个matrix,所以a**2返回的是a*a,相当于矩阵相乘。而c是array,c**2相当于,c中的元素逐个求平方。
问题就出来了,如果一个程序里面既有matrix 又有array,会让人脑袋大。但是如果只用array,你不仅可以实现matrix所有的功能,还减少了编程和阅读的麻烦。
当然你可以通过下面的两条命令轻松的实现两者之间的转换:np.asmatrix
和np.asarray
对我来说,numpy 中的array与numpy中的matrix,matlab中的matrix的最大的不同是,在做归约运算时,array的维数会发生变化,但matrix总是保持为2维。例如下面求平均值的运算
>>> m = np.mat([[1,2],[2,3]]) >>> m matrix([[1, 2], [2, 3]]) >>> mm = m.mean(1) >>> mm matrix([[ 1.5], [ 2.5]]) >>> mm.shape (2, 1) >>> m - mm matrix([[-0.5, 0.5], [-0.5, 0.5]])
对array 来说
>>> a = np.array([[1,2],[2,3]]) >>> a array([[1, 2], [2, 3]]) >>> am = a.mean(1) >>> am.shape (2,) >>> am array([ 1.5, 2.5]) >>> a - am #wrong array([[-0.5, -0.5], [ 0.5, 0.5]]) >>> a - am[:, np.newaxis] #right array([[-0.5, 0.5], [-0.5, 0.5]])
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具