[tensorflow] which dimension to reduce in tf.reduce_sum()

I began to learn tensorflow.import tensorflow as tf, firstly of course. When encountered with tf.reduce_sum(array) or tf.reduce_mean(array), I felt a little doubt about which is the exact dimension to be reduced. Directly digging the answer in the unfamiliar tensorflow world(for me), somehow, made me confused.

the answer

Think about this. When create a array applying numpy, we use a = numpy.random.rand(3,4,5). That means the length of the first dimension is 3, the length of the second dimension is 4 and 5 for the third dimension.
if applying sess.run(tf.reduce_sum(a,0)), the product’s shape will be (4,5), the dimension length of which is 3 is reduced.

appendix

import tensorflow as tf
import numpy as np
a = np.random.rand(3,4,5)
a
Out[138]:
array([[[ 0.67386161, 0.25891236, 0.15750355, 0.99356577, 0.62401749],
[ 0.44104193, 0.14171052, 0.92457023, 0.3475105 , 0.46261946],
[ 0.74483249, 0.22724867, 0.61261517, 0.20140201, 0.11718528],
[ 0.53023319, 0.65372313, 0.34679634, 0.7626164 , 0.47658279]],
[[ 0.22209199, 0.57104615, 0.94053357, 0.10663142, 0.96630193],
[ 0.87147539, 0.29464845, 0.41552753, 0.05044025, 0.92632825],
[ 0.78404338, 0.42560083, 0.91265402, 0.37281405, 0.25450812],
[ 0.00306304, 0.74638202, 0.19689413, 0.65906257, 0.46627029]],
[[ 0.46042323, 0.48506186, 0.73388123, 0.50179246, 0.3163692 ],
[ 0.33435115, 0.01610695, 0.98188888, 0.77100164, 0.7795511 ],
[ 0.24383665, 0.28206927, 0.09408851, 0.90500411, 0.69718288],
[ 0.40164087, 0.66995977, 0.61219998, 0.91530942, 0.00388272]]])
sess = tf.Session()
sess.run(tf.reduce_mean(a,0))
Out[140]:
array([[ 0.45212561, 0.43834012, 0.61063945, 0.53399655, 0.63556287],
[ 0.54895615, 0.15082197, 0.77399555, 0.3896508 , 0.72283294],
[ 0.59090417, 0.31163959, 0.5397859 , 0.49307339, 0.35629209],
[ 0.3116457 , 0.69002164, 0.38529681, 0.77899613, 0.3155786 ]])
sess.run(tf.reduce_mean(a,0)).shape
Out[141]: (4, 5)
sess.run(tf.reduce_mean(a,1)).shape
Out[142]: (3, 5)
In[...]: import tensorflow as tf
In[...]: import numpy as np
In[...]: a = np.random.rand(3,4,5)
In[...]: a
Out[138]:
array([[[ 0.67386161, 0.25891236, 0.15750355, 0.99356577, 0.62401749],
[ 0.44104193, 0.14171052, 0.92457023, 0.3475105 , 0.46261946],
[ 0.74483249, 0.22724867, 0.61261517, 0.20140201, 0.11718528],
[ 0.53023319, 0.65372313, 0.34679634, 0.7626164 , 0.47658279]],
[[ 0.22209199, 0.57104615, 0.94053357, 0.10663142, 0.96630193],
[ 0.87147539, 0.29464845, 0.41552753, 0.05044025, 0.92632825],
[ 0.78404338, 0.42560083, 0.91265402, 0.37281405, 0.25450812],
[ 0.00306304, 0.74638202, 0.19689413, 0.65906257, 0.46627029]],
[[ 0.46042323, 0.48506186, 0.73388123, 0.50179246, 0.3163692 ],
[ 0.33435115, 0.01610695, 0.98188888, 0.77100164, 0.7795511 ],
[ 0.24383665, 0.28206927, 0.09408851, 0.90500411, 0.69718288],
[ 0.40164087, 0.66995977, 0.61219998, 0.91530942, 0.00388272]]])
In[...]: sess = tf.Session()
In[...]: sess.run(tf.reduce_mean(a,0))
Out[140]:
array([[ 0.45212561, 0.43834012, 0.61063945, 0.53399655, 0.63556287],
[ 0.54895615, 0.15082197, 0.77399555, 0.3896508 , 0.72283294],
[ 0.59090417, 0.31163959, 0.5397859 , 0.49307339, 0.35629209],
[ 0.3116457 , 0.69002164, 0.38529681, 0.77899613, 0.3155786 ]])
In[...]: sess.run(tf.reduce_mean(a,0)).shape
Out[141]: (4, 5)
In[...]: sess.run(tf.reduce_mean(a,1)).shape
Out[142]: (3, 5)

posted on   yusisc  阅读(17)  评论(0编辑  收藏  举报

编辑推荐:
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
阅读排行:
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具

导航

< 2025年3月 >
23 24 25 26 27 28 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31 1 2 3 4 5
点击右上角即可分享
微信分享提示