Purpose Of Multiple Graphs In Tensorflow
why tensorflow designed to programming with multiple graphs
ID | simple | detailed |
---|---|---|
1 | give user more control with over naming | A tf.Graph defines the namespace for tf.Operation objects: each operation in a single graph must have a unique name. TensorFlow will “uniquify” the names of operations by appending “_1”, “_2”, and so on to their names if the requested name is already taken. Using multiple explicitly created graphs gives you more control over what name is given to each operation. |
2 | simplify the construction of large graph | The default graph stores information about every tf.Operation and tf.Tensor that was ever added to it. If your program creates a large number of unconnected subgraphs, it may be more efficient to use a different tf.Graph to build each subgraph, so that unrelated state can be garbage collected. |
reference
Graphs and Sessions | TensorFlow
https://www.tensorflow.org/programmers_guide/graphs
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· AI技术革命,工作效率10个最佳AI工具