RNN pytorch 源码之头发掉光版解析

本萌新本来想好好学习下PYTORCH 版LSTM使用,学着学着还是一知半解 就准备去看看LSTM源码实现,发现是继承自RNN 类,结果就来弄清楚RNN 源码,真实学海无涯 头发有限。。。。

咱先从最简单的RNN模型下手,先不管几层layer叠加、方向问题,小萌新突然发现 从源码学习真的进步大,胜过看好多别人整理的博客。

那我就从源码注释处

 

 

Inputs: input, h_0
        - **input** of shape `(seq_len, batch, input_size)`: tensor containing the features
          of the input sequence. The input can also be a packed variable length
          sequence. See :func:`torch.nn.utils.rnn.pack_padded_sequence`
          or :func:`torch.nn.utils.rnn.pack_sequence`
          for details.
        - **h_0** of shape `(num_layers * num_directions, batch, hidden_size)`: tensor
          containing the initial hidden state for each element in the batch.
          Defaults to zero if not provided. If the RNN is bidirectional,
          num_directions should be 2, else it should be 1.

    Outputs: output, h_n
        - **output** of shape `(seq_len, batch, num_directions * hidden_size)`: tensor
          containing the output features (`h_t`) from the last layer of the RNN,
          for each `t`.  If a :class:`torch.nn.utils.rnn.PackedSequence` has
          been given as the input, the output will also be a packed sequence.

          For the unpacked case, the directions can be separated
          using ``output.view(seq_len, batch, num_directions, hidden_size)``,
          with forward and backward being direction `0` and `1` respectively.
          Similarly, the directions can be separated in the packed case.
        - **h_n** of shape `(num_layers * num_directions, batch, hidden_size)`: tensor
          containing the hidden state for `t = seq_len`.

          Like *output*, the layers can be separated using
          ``h_n.view(num_layers, num_directions, batch, hidden_size)``.

    Shape:
        - Input1: :math:`(L, N, H_{in})` tensor containing input features where
          :math:`H_{in}=\text{input\_size}` and `L` represents a sequence length.
        - Input2: :math:`(S, N, H_{out})` tensor
          containing the initial hidden state for each element in the batch.
          :math:`H_{out}=\text{hidden\_size}`
          Defaults to zero if not provided. where :math:`S=\text{num\_layers} * \text{num\_directions}`
          If the RNN is bidirectional, num_directions should be 2, else it should be 1.
        - Output1: :math:`(L, N, H_{all})` where :math:`H_{all}=\text{num\_directions} * \text{hidden\_size}`
        - Output2: :math:`(S, N, H_{out})` tensor containing the next hidden state
          for each element in the batch

    Attributes:
        weight_ih_l[k]: the learnable input-hidden weights of the k-th layer,
            of shape `(hidden_size, input_size)` for `k = 0`. Otherwise, the shape is
            `(hidden_size, num_directions * hidden_size)`
        weight_hh_l[k]: the learnable hidden-hidden weights of the k-th layer,
            of shape `(hidden_size, hidden_size)`
        bias_ih_l[k]: the learnable input-hidden bias of the k-th layer,
            of shape `(hidden_size)`
        bias_hh_l[k]: the learnable hidden-hidden bias of the k-th layer,
            of shape `(hidden_size)`

    .. note::
        All the weights and biases are initialized from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})`
        where :math:`k = \frac{1}{\text{hidden\_size}}`

    .. include:: ../cudnn_rnn_determinism.rst

    .. include:: ../cudnn_persistent_rnn.rst

    Examples::

        >>> rnn = nn.RNN(10, 20, 2)
        >>> input = torch.randn(5, 3, 10)
        >>> h0 = torch.randn(2, 3, 20)
        >>> output, hn = rnn(input, h0)

输入

  输入句子shape= `(seq_len, batch, input_size),我们一下子往模型输入5个句子,每个句子长度不一致,以最长长度10作为MAX_LENGTH,每个token 用300个数字来表示,那shape=(5,10,300)

   h_0 shape=(num_layers * num_directions, batch, hidden_size),如果没有提供的话,就设为0

输出

第一个返回值(output)是最后一层 所有时刻的隐藏状态,因为每个time step 都有输出,所以第一维大小等于 seq_length,第三维的话,如果是双向的话,是需要在每个time step上将前向的隐状态和后向的隐状态进行拼接,因而大小是 方向数*hidden_size,维度是 (seq_len, batch, num_directions * hidden_size)
第二个返回值(hn)是每一层最后一个时刻的隐藏状态,如果是最简单的一层lstm,单向的话,hn 就等于output[-1],维度是(num_layers * num_directions, batch, hidden_size),我们解释下第一维度,该维度表示每一层最后一个time step的输出,假设我们现在是双向的,共有两层,h_n[0]表示第一层前向传播最后一个time
step的输出,h_n[1]表示第一层后向传播最后一个time step的输出,h_n[2]表示第二层前向传播最后一个time step的输出,h_n[3]表示第二层后向传播最后一个time step的输出
 
import torch
import torch.nn as nn
rnn = nn.RNN(input_size=150, hidden_size=300, num_layers=2, bidirectional=True,batch_first=False)
input = torch.randn(10, 5, 150)
h0 = torch.randn(4, 5, 300)
c0 = torch.randn(4, 5, 300)
output,hn = rnn(input, h0)
print('output shape: ', output.shape)
print('hn shape: ', hn.shape)

运行结果如下:
output shape:  torch.Size([10, 5, 600])
hn shape:  torch.Size([4, 5, 300])

接下来加深下我们对参数output,hn的理解

1.前向传播时,output中最后一个time step的前300个 应该与hn最后一层前向传播的输出应该一致。

output[-1, 0, :20] == hn[2, 0,:]
output中第一个句子 最后一个time step的前300个 应该写成
output[-1, 0, :300](或者 output[9, 0, :300])
hn第一个句子最后一层前向传播的输出hn[2, 0,:],0表示 第一层前向传播最后一个time step,1表示第一层后向传播最后一个time step,2表示第二次前向传播最后一个time step
print(output[-1,0,:300])
print(output[-1,0,:300]==hn[2,0,:])

跑出来结果是对的哦,只怪我不该取那么高的hidden size,打印出来太多了

 

 需要训练的参数

 

 在forward()函数之前,有很多准备函数,检查input,hidden,我们一个一个来瞅瞅

 

 

 

 

这个函数检查了要前向传输的自变量,当batch_size不为空时,这意味着我们的sequence已经是pack之后的了,当这个sequence是pad之后的,我们输入的期待维度便是2维了

 

 1     def forward(self, input: Tensor, hx: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]:
 2         is_packed = isinstance(input, PackedSequence)
 3         if is_packed:
 4             input, batch_sizes, sorted_indices, unsorted_indices = input
 5             max_batch_size = batch_sizes[0]
 6             max_batch_size = int(max_batch_size)
 7         else:
 8             batch_sizes = None
 9             max_batch_size = input.size(0) if self.batch_first else input.size(1)
10             sorted_indices = None
11             unsorted_indices = None
12         if hx is None:
13             num_directions = 2 if self.bidirectional else 1
14             hx = torch.zeros(self.num_layers * num_directions,
15                              max_batch_size, self.hidden_size,
16                              dtype=input.dtype, device=input.device)
17         else:
18             # Each batch of the hidden state should match the input sequence that
19             # the user believes he/she is passing in.
20             hx = self.permute_hidden(hx, sorted_indices)
21         self.check_forward_args(input, hx, batch_sizes)
22         _impl = _rnn_impls[self.mode]
23         if batch_sizes is None:
24             result = _impl(input, hx, self._flat_weights, self.bias, self.num_layers,
25                            self.dropout, self.training, self.bidirectional, self.batch_first)
26         else:
27             result = _impl(input, batch_sizes, hx, self._flat_weights, self.bias,
28                            self.num_layers, self.dropout, self.training, self.bidirectional)
29         output = result[0]
30         hidden = result[1]
31         if is_packed:
32             output = PackedSequence(output, batch_sizes, sorted_indices, unsorted_indices)
33         return output, self.permute_hidden(hidden, unsorted_indices)

 

 上来先判断输入是否已经packed 了,再采取不同后续处理,

那我们先来了解下 PackedSequence,PackedSequence目的是将 将一批长度不同的句子 封装成一个batch,可以直接作为RNN/LSTM的输入.Pytorch提供了pack_padded_sequence()方法。

如果是已经pack过的,则batch_sizes 是从大到小降序的,因此max_batch_size 等于batch_sizes里的第一个元素。

相反没经过pack处理的话,如果输入第一维是batch,那max_batch_size 等于输入第一维度,如果输入第二维是batch, max_batch_size=input.size(1)

接下来判断我们的隐向量输入hx了,同时默认hx为空,此处是如果我们没有默认的隐向量输入时,hx会初始化为0

_impl = _rnn_impls[self.mode] 
_rnn_impls = {
    'RNN_TANH': _VF.rnn_tanh,
    'RNN_RELU': _VF.rnn_relu,
}

小萌新读到这 头有点大了,去网上找找资料才发现,查询_rnn_impls来知道我们要启用的前向函数。pytorch上找到了相关源码,贴c++代码 https://github.com/pytorch/pytorch/blob/1a93b96815b5c87c92e060a6dca51be93d712d09/aten/src/ATen/native/RNN.cpp

 

posted @ 2020-12-09 14:35  打了鸡血的女汉子  阅读(699)  评论(0编辑  收藏  举报