PLS:利用PLS(两个主成分的贡献率就可达100%)提高测试集辛烷值含量预测准确度并《测试集辛烷值含量预测结果对比》—Jason niu
load spectra; temp = randperm(size(NIR, 1)); P_train = NIR(temp(1:50),:); T_train = octane(temp(1:50),:); P_test = NIR(temp(51:end),:); T_test = octane(temp(51:end),:); k = 2; [Xloadings,Yloadings,Xscores,Yscores,betaPLS,PLSPctVar,MSE,stats] = plsregress(P_train,T_train,k); figure percent_explained = 100 * PLSPctVar(2,:) / sum(PLSPctVar(2,:)); pareto(percent_explained) xlabel('主成分') ylabel('贡献率(%)') title('PLS:各个主成分的贡献率—Jason niu') N = size(P_test,1); T_sim = [ones(N,1) P_test] * betaPLS; error = abs(T_sim - T_test) ./ T_test; R2 = (N * sum(T_sim .* T_test) - sum(T_sim) * sum(T_test))^2 / ((N * sum((T_sim).^2) - (sum(T_sim))^2) * (N * sum((T_test).^2) - (sum(T_test))^2)); result = [T_test T_sim error] figure plot(1:N,T_test,'b:*',1:N,T_sim,'r-o') legend('真实值','预测值','location','best') xlabel('预测样本') ylabel('辛烷值') string = {'PLS:利用PLS(两个主成分的贡献率就可达100%)提高《测试集辛烷值含量预测结果对比》的准确度—Jason niu';['R^2=' num2str(R2)]}; title(string)
不念过去,不畏将来!
理想,信仰,使命感……
愿你出走半生,归来仍是少年……