Decision Trees:机器学习根据大量数据,已知年龄、收入、是否上海人、私家车价格的人,预测Ta是否有真实购买上海黄浦区楼房的能力—Jason niu
from sklearn.feature_extraction import DictVectorizer import csv from sklearn import tree from sklearn import preprocessing from sklearn.externals.six import StringIO allElectronicsData = open(r'F:/AI/DL_month1201/01DTree/niu.csv', 'rt') reader = csv.reader(allElectronicsData) headers = next(reader) print(headers) featureList = [] labelList = [] for row in reader: labelList.append(row[len(row)-1]) rowDict = {} for i in range(1, len(row)-1): rowDict[headers[i]] = row[i] featureList.append(rowDict) print(featureList) vec = DictVectorizer() dummyX = vec.fit_transform(featureList) .toarray() print("dummyX: " + str(dummyX)) print(vec.get_feature_names()) print("labelList: " + str(labelList)) lb = preprocessing.LabelBinarizer() dummyY = lb.fit_transform(labelList) print("dummyY: " + str(dummyY)) clf = tree.DecisionTreeClassifier(criterion='entropy') clf = clf.fit(dummyX, dummyY) print("clf: " + str(clf)) with open("niu.dot", 'w') as f: f = tree.export_graphviz(clf, feature_names=vec.get_feature_names(), out_file=f) oneRowX = dummyX[0, :] print("oneRowX: " + str(oneRowX)) newRowX = oneRowX newRowX[0] = 1 newRowX[2] = 0 print("newRowX: " + str(newRowX)) predictedY = clf.predict([newRowX]) print("predictedY: " + str(predictedY))
不念过去,不畏将来!
理想,信仰,使命感……
愿你出走半生,归来仍是少年……