Kmeans:利用Kmeans实现对多个点进行自动分类—Jason niu
import numpy as np def kmeans(X, k, maxIt): numPoints, numDim = X.shape dataSet = np.zeros((numPoints, numDim + 1)) dataSet[:, :-1] = X centroids = dataSet[np.random.randint(numPoints, size = k), :] centroids[:, -1] = range(1, k +1) iterations = 0 oldCentroids = None while not shouldStop(oldCentroids, centroids, iterations, maxIt): print ("iteration: \n", iterations) print ("dataSet: \n", dataSet) print ("centroids: \n", centroids) oldCentroids = np.copy(centroids) iterations += 1 updateLabels(dataSet, centroids) centroids = getCentroids(dataSet, k) return dataSet def shouldStop(oldCentroids, centroids, iterations, maxIt): if iterations > maxIt: return True return np.array_equal(oldCentroids, centroids) def updateLabels(dataSet, centroids): numPoints, numDim = dataSet.shape for i in range(0, numPoints): dataSet[i, -1] = getLabelFromClosestCentroid(dataSet[i, :-1], centroids) def getLabelFromClosestCentroid(dataSetRow, centroids): label = centroids[0, -1]; minDist = np.linalg.norm(dataSetRow - centroids[0, :-1]) for i in range(1 , centroids.shape[0]): dist = np.linalg.norm(dataSetRow - centroids[i, :-1]) if dist < minDist: minDist = dist label = centroids[i, -1] print ("minDist:", minDist) return label def getCentroids(dataSet, k): result = np.zeros((k, dataSet.shape[1])) for i in range(1, k + 1): oneCluster = dataSet[dataSet[:, -1] == i, :-1] ) result[i - 1, :-1] = np.mean(oneCluster, axis = 0) result[i - 1, -1] = i return result x1 = np.array([1, 1]) x2 = np.array([2, 1]) x3 = np.array([4, 3]) x4 = np.array([5, 4]) testX = np.vstack((x1, x2, x3, x4)) result = kmeans(testX, 2, 10) print ("final result:") print (result)
不念过去,不畏将来!
理想,信仰,使命感……
愿你出走半生,归来仍是少年……