62. 不同路径

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

 

 

示例 1:

输入:m = 3, n = 7
输出:28
示例 2:

输入:m = 3, n = 2
输出:3
解释:
从左上角开始,总共有 3 条路径可以到达右下角。
1. 向右 -> 向下 -> 向下
2. 向下 -> 向下 -> 向右
3. 向下 -> 向右 -> 向下
示例 3:

输入:m = 7, n = 3
输出:28
示例 4:

输入:m = 3, n = 3
输出:6
 

提示:

1 <= m, n <= 100
题目数据保证答案小于等于 2 * 109

简单动态规划解法

class Solution:
    def uniquePaths(self, m: int, n: int) -> int:
        # 动态规划解法
        if not m or not n: return 0

        dp = [[0 for _ in range(n)] for _ in range(m)]
        # 边界情况考虑
        for i in range(m):
            dp[i][0] = 1

        for j in range(n):
            dp[0][j] = 1

        for i in range(1, m):
            for j in range(1, n):
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1]

        return dp[m - 1][n - 1]

 

posted @ 2021-06-24 23:04  风不再来  阅读(24)  评论(0编辑  收藏  举报