Spark如何对源端数据做切分?

简介: 典型的Spark作业读取位于OSS的Parquet外表时,源端的并发度(task/partition)如何确定?特别是在做TPCH测试时有一些疑问,如源端扫描文件的并发度是如何确定的?是否一个parquet文件对应一个partition?多个parquet文件对应一个partition?还是一个parquet文件对应多个partition?本文将从源码角度进行分析进而解答这些疑问。

引言

典型的Spark作业读取位于OSS的Parquet外表时,源端的并发度(task/partition)如何确定?特别是在做TPCH测试时有一些疑问,如源端扫描文件的并发度是如何确定的?是否一个parquet文件对应一个partition?多个parquet文件对应一个partition?还是一个parquet文件对应多个partition?本文将从源码角度进行分析进而解答这些疑问。

分析

数据源读取对应的物理执行节点为FileSourceScanExec,读取数据代码块如下

 

lazy val inputRDD: RDD[InternalRow] = {
    val readFile: (PartitionedFile) => Iterator[InternalRow] =
      relation.fileFormat.buildReaderWithPartitionValues(
        sparkSession = relation.sparkSession,
        dataSchema = relation.dataSchema,
        partitionSchema = relation.partitionSchema,
        requiredSchema = requiredSchema,
        filters = pushedDownFilters,
        options = relation.options,
        hadoopConf = relation.sparkSession.sessionState.newHadoopConfWithOptions(relation.options))
    val readRDD = if (bucketedScan) {
      createBucketedReadRDD(relation.bucketSpec.get, readFile, dynamicallySelectedPartitions,
        relation)
    } else {
      createReadRDD(readFile, dynamicallySelectedPartitions, relation)
    }
    sendDriverMetrics()
    readRDD
  }

主要关注非bucket的处理,对于非bucket的扫描调用createReadRDD方法定义如下

/**
   * Create an RDD for non-bucketed reads.
   * The bucketed variant of this function is [[createBucketedReadRDD]].
   *
   * @param readFile a function to read each (part of a) file.
   * @param selectedPartitions Hive-style partition that are part of the read.
   * @param fsRelation [[HadoopFsRelation]] associated with the read.
   */
  private def createReadRDD(
      readFile: (PartitionedFile) => Iterator[InternalRow],
      selectedPartitions: Array[PartitionDirectory],
      fsRelation: HadoopFsRelation): RDD[InternalRow] = {
    // 文件打开开销,每次打开文件最少需要读取的字节    
    val openCostInBytes = fsRelation.sparkSession.sessionState.conf.filesOpenCostInBytes
    // 最大切分分片大小
    val maxSplitBytes =
      FilePartition.maxSplitBytes(fsRelation.sparkSession, selectedPartitions)
    logInfo(s"Planning scan with bin packing, max size: $maxSplitBytes bytes, " +
      s"open cost is considered as scanning $openCostInBytes bytes.")
    // Filter files with bucket pruning if possible
    val bucketingEnabled = fsRelation.sparkSession.sessionState.conf.bucketingEnabled
    val shouldProcess: Path => Boolean = optionalBucketSet match {
      case Some(bucketSet) if bucketingEnabled =>
        // Do not prune the file if bucket file name is invalid
        filePath => BucketingUtils.getBucketId(filePath.getName).forall(bucketSet.get)
      case _ =>
        _ => true
    }
    // 对分区下文件进行切分并按照从大到小进行排序
    val splitFiles = selectedPartitions.flatMap { partition =>
      partition.files.flatMap { file =>
        // getPath() is very expensive so we only want to call it once in this block:
        val filePath = file.getPath
        if (shouldProcess(filePath)) {
          // 文件是否可split,parquet/orc/avro均可被split
          val isSplitable = relation.fileFormat.isSplitable(
            relation.sparkSession, relation.options, filePath)
          // 切分文件
          PartitionedFileUtil.splitFiles(
            sparkSession = relation.sparkSession,
            file = file,
            filePath = filePath,
            isSplitable = isSplitable,
            maxSplitBytes = maxSplitBytes,
            partitionValues = partition.values
          )
        } else {
          Seq.empty
        }
      }
    }.sortBy(_.length)(implicitly[Ordering[Long]].reverse)
    val partitions =
      FilePartition.getFilePartitions(relation.sparkSession, splitFiles, maxSplitBytes)
    new FileScanRDD(fsRelation.sparkSession, readFile, partitions)
  }

 

可以看到确定最大切分分片大小maxSplitBytes对于后续切分为多少个文件非常重要,其核心逻辑如下

def maxSplitBytes(
      sparkSession: SparkSession,
      selectedPartitions: Seq[PartitionDirectory]): Long = {
    // 读取文件时打包成最大的partition大小,默认为128MB,对应一个block大小
    val defaultMaxSplitBytes = sparkSession.sessionState.conf.filesMaxPartitionBytes
    // 打开每个文件的开销,默认为4MB
    val openCostInBytes = sparkSession.sessionState.conf.filesOpenCostInBytes
    // 建议的(不保证)最小分割文件分区数,默认未设置,从leafNodeDefaultParallelism获取
    // 代码逻辑调用链 SparkSession#leafNodeDefaultParallelism -> SparkContext#defaultParallelism
    // -> TaskSchedulerImpl#defaultParallelism -> CoarseGrainedSchedulerBackend#defaultParallelism
    // -> 总共多少核max(executor core总和, 2),最少为2
    val minPartitionNum = sparkSession.sessionState.conf.filesMinPartitionNum
      .getOrElse(sparkSession.leafNodeDefaultParallelism)
    // 总共读取的大小
    val totalBytes = selectedPartitions.flatMap(_.files.map(_.getLen + openCostInBytes)).sum
    // 单core读取的大小
    val bytesPerCore = totalBytes / minPartitionNum
    // 计算大小,不会超过设置的128MB
    Math.min(defaultMaxSplitBytes, Math.max(openCostInBytes, bytesPerCore))
  }

 

对于PartitionedFileUtil#splitFiles,其核心逻辑如下,较为简单,直接按照最大切分大小切分大文件来进行分片

def splitFiles(
      sparkSession: SparkSession,
      file: FileStatus,
      filePath: Path,
      isSplitable: Boolean,
      maxSplitBytes: Long,
      partitionValues: InternalRow): Seq[PartitionedFile] = {
    if (isSplitable) {
      // 切分为多个分片
      (0L until file.getLen by maxSplitBytes).map { offset =>
        val remaining = file.getLen - offset
        val size = if (remaining > maxSplitBytes) maxSplitBytes else remaining
        val hosts = getBlockHosts(getBlockLocations(file), offset, size)
        PartitionedFile(partitionValues, filePath.toUri.toString, offset, size, hosts)
      }
    } else {
      Seq(getPartitionedFile(file, filePath, partitionValues))
    }
  }

在获取到Seq[PartitionedFile]列表后,还并没有完成对文件的切分,还需要调用FilePartition#getFilePartitions做最后的处理,方法核心逻辑如下

def getFilePartitions(
      sparkSession: SparkSession,
      partitionedFiles: Seq[PartitionedFile],
      maxSplitBytes: Long): Seq[FilePartition] = {
    val partitions = new ArrayBuffer[FilePartition]
    val currentFiles = new ArrayBuffer[PartitionedFile]
    var currentSize = 0L
    /** Close the current partition and move to the next. */
    def closePartition(): Unit = {
      if (currentFiles.nonEmpty) {
        // Copy to a new Array.
        // 重新生成一个新的PartitionFile
        val newPartition = FilePartition(partitions.size, currentFiles.toArray)
        partitions += newPartition
      }
      currentFiles.clear()
      currentSize = 0
    }
    // 打开文件开销,默认为4MB
    val openCostInBytes = sparkSession.sessionState.conf.filesOpenCostInBytes
    // Assign files to partitions using "Next Fit Decreasing"
    partitionedFiles.foreach { file =>
      if (currentSize + file.length > maxSplitBytes) {
        // 如果累加的文件大小大于的最大切分大小,则关闭该分区,表示完成一个Task读取的数据切分
        closePartition()
      }
      // Add the given file to the current partition.
      currentSize += file.length + openCostInBytes
      currentFiles += file
    }
    // 最后关闭一次分区,文件可能较小
    closePartition()
    partitions.toSeq
  }

可以看到经过这一步后,会把一些小文件做合并,生成maxSplitBytes大小的PartitionFile,这样可以避免拉起太多task读取太多小的文件。

生成的FileScanRDD(new FileScanRDD(fsRelation.sparkSession, readFile, partitions))的并发度为partitions的长度,也即最后Spark生成的Task个数

override protected def getPartitions: Array[RDDPartition] = filePartitions.toArray

整体流程图如下图所示

 

拆分、合并过程如下图所示

image.png

实战

对于TPCH 10G生成的customer parquet表

https://oss.console.aliyun.com/bucket/oss-cn-hangzhou/fengzetest/object?path=rt_spark_test%2Fcustomer-parquet%2F

 

共8个Parquet文件,总文件大小为113.918MB

 

Spark作业配置如下,executor只有1core

conf spark.driver.resourceSpec=small;
conf spark.executor.instances=1;
conf spark.executor.resourceSpec=small;
conf spark.app.name=Spark SQL Test;
conf spark.adb.connectors=oss;
use tpcd;
select * from customer order by C_CUSTKEY desc limit 100;

根据前面的公式计算

defaultMaxSplitBytes = 128MB
openCostInBytes = 4MB
minPartitionNum = max(1, 2) = 2
totalBytes = 113.918 + 8 * 4MB = 145.918MB
bytesPerCore = 145.918MB / 2 = 72.959MB
maxSplitBytes = 72.959MB = Math.min(defaultMaxSplitBytes, Math.max(openCostInBytes, bytesPerCore))

得到maxSplitBytes为72.959MB,从日志中也可看到对应大小

经过排序后的文件顺序为(00000, 00001, 00002, 00003, 00004, 00006, 00005, 00007),再次经过合并后得到3个FilePartitioned,分别对应

  • FilePartitioned 1: 00000, 00001, 00002
  • FilePartitioned 2: 00003, 00004, 00006
  • FilePartitioned 3: 00005, 00007

即总共会生成3个Task

从Spark UI查看确实生成3个Task

从日志查看也是生成3个Task

变更Spark作业配置,5个executor共10core

conf spark.driver.resourceSpec=small;
conf spark.executor.instances=5;
conf spark.executor.resourceSpec=medium;
conf spark.app.name=Spark SQL Test;
conf spark.adb.connectors=oss;
use tpcd;
select * from customer order by C_CUSTKEY desc limit 100;

根据前面的公式计算

defaultMaxSplitBytes = 128MB
openCostInBytes = 4MB
minPartitionNum = max(10, 2) = 10
totalBytes = 113.918 + 8 * 4MB = 145.918MB
bytesPerCore = 145.918MB / 10 = 14.5918MB
maxSplitBytes = 14.5918MB = Math.min(defaultMaxSplitBytes, Math.max(openCostInBytes, bytesPerCore))

查看日志

此时可以看到14.5918MB会对源文件进行切分,会对00001, 00002,00003,00004,00005,00006进行切分,切分成两份,00007由于小于14.5918MB,因此不会进行切分,经过PartitionedFileUtil#splitFiles后,总共存在7 * 2 + 1 = 15个PartitionedFile

  • 00000(0 -> 14.5918MB), 00000(14.5918MB -> 15.698MB)
  • 00001(0 -> 14.5918MB), 00001(14.5918MB -> 15.632MB)
  • 00002(0 -> 14.5918MB), 00002(14.5918MB -> 15.629MB)
  • 00003(0 -> 14.5918MB), 00003(14.5918MB -> 15.624MB)
  • 00004(0 -> 14.5918MB), 00004(14.5918MB -> 15.617MB)
  • 00005(0 -> 14.5918MB), 00005(14.5918MB -> 15.536MB)
  • 00006(0 -> 14.5918MB), 00006(14.5918MB -> 15.539MB)
  • 00007(0 -> 4.634MB)

经过排序后得到如下以及合并后得到10个FilePartitioned,分别对应

  • FilePartitioned 1: 00000(0 -> 14.5918MB)
  • FilePartitioned 2: 00001(0 -> 14.5918MB)
  • FilePartitioned 3: 00002(0 -> 14.5918MB)
  • FilePartitioned 4: 00003(0 -> 14.5918MB)
  • FilePartitioned 5: 00004(0 -> 14.5918MB)
  • FilePartitioned 6: 00005(0 -> 14.5918MB)
  • FilePartitioned 7: 00006(0 -> 14.5918MB)
  • FilePartitioned 8: 00007(0 -> 4.634MB),00000(14.5918MB -> 15.698MB)
  • FilePartitioned 9: 00001(14.5918MB -> 15.632MB),00002(14.5918MB -> 15.629MB),00003(14.5918MB -> 15.624MB)
  • FilePartitioned 10: 00004(14.5918MB -> 15.617MB),00005(14.5918MB -> 15.536MB),00006(14.5918MB -> 15.539MB)

 

即总共会生成10个Task

通过Spark UI也可查看到生成了10个Task

查看日志,000004(14.5918MB -> 15.617MB),00005(14.5918MB -> 15.536MB),00006(14.5918MB -> 15.539MB)在同一个Task中

00007(0 -> 4.634MB),00000(14.5918MB -> 15.698MB)

 

00001(14.5918MB -> 15.632MB),00002(14.5918MB -> 15.629MB),00003(14.5918MB -> 15.624MB)在同一个Task中

 

总结

通过源码可知Spark对于源端Partition切分,会考虑到分区下所有文件大小以及打开每个文件的开销,同时会涉及对大文件的切分以及小文件的合并,最后得到一个相对合理的Partition。

原文链接:http://click.aliyun.com/m/1000349867/

本文为阿里云原创内容,未经允许不得转载。

posted @ 2022-07-22 16:47  阿里云云栖号  阅读(255)  评论(0编辑  收藏  举报