es实战-使用IK分词器进行词频统计
简介:通过IK分词器分词并生成词云。
本文主要介绍如何通过 IK 分词器进行词频统计。使用分词器对文章的词频进行统计,主要目的是实现如下图所示的词云功能,可以找到文章内的重点词汇。后续也可以对词进行词性标注,实体识别以及对实体的情感分析等功能。
数据输入:文本信息
数据输出:词 - 词频(TF-IDF等) - 词性等内容
使用的组件:分词器、语料库、词云展示组件等
功能点:白名单,黑名单,同义词等
现存的中文分词器有 IK、HanLP、jieba 和 NLPIR 等几种,不同分词器各有特点,本文使用 IK 实现,因为 ES 一般使用 medcl 等大佬封装的 IK 分词器插件作为中文分词器。
由于 ES 的 IK 分词器插件深度结合了 ES,仅对文本分词使用不到 ES 的内容,所以文本采用
1. IK 分词统计代码
IK 的代码相对比较简单,东西不多,将 String 拆分为词并统计代码如下:
- 单纯统计词频:
- 统计词频和文档频率:
2. 获取词云 TopN 个词
获取 TopN 个词用于词云展示有多种排序方式,可以直接根据词频、文档频率或者 TF-IDF 等算法进行排序,本文仅根据词频求取 TopN。
M 个数字获取 TopN 有以下算法:
- M 小 N 小:快速选择算法
- M 大 N 小:小顶堆
- M 大 N 大:归并排序
本文采用小顶堆方式实现,对应JAVA中的优先队列数据结构 PriorityQueue:
3. IK 代码浅析
核心主类为IKSegmenter
,需要关注的点有dic
包也就是词典相关内容以及字符处理工具类CharacterUtil
的identifyCharType()
方法,目录结构如下:
词典私有构造方法Dictionary()
内会加载 IK 自带的词典以及扩展词典,我们也可以把自己线上不变的词典放到这里这样IKAnalyzer.cfg.xml
中就只需要配置经常变更词典即可。
在IKSegmenter
类调用next()
方法获取下一个词元时,会调用CharacterUtil
类中的identifyCharType()
方法识别字符种类,这里我们也可以自定义一些字符种类针对处理新兴的网络语言,如@、##等内容:
由于 IK 内容不多,建议大家可以从头捋一遍,包括各个实现ISegmenter
接口的各个自分词器等内容。
4. 进行词云展示
词云展示可以使用 Kibana 自带的词云 Dashboard,或者比较热门的 WordCloud。自己测试可以使用线上的
5. 总结
本文主要通过 IK 分词器实现了词频统计功能,用于词云的展示,不仅仅适用于 ES,任何数据源文档都可以进行词频统计。但是功能比较基础,感兴趣的同学可以实现一下词排序方式变更(tf/idf)、词性标注、实体识别和情感分析等功能;IK 分词器较为局限,需要使用 HanLP(自带词性标注)等更高级的分词器以及 NLP 相关知识来辅助,也可以参考百度 AI 的词法分析模块。
本文为阿里云原创内容,未经允许不得转载。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· DeepSeek 开源周回顾「GitHub 热点速览」
· 物流快递公司核心技术能力-地址解析分单基础技术分享
· .NET 10首个预览版发布:重大改进与新特性概览!
· AI与.NET技术实操系列(二):开始使用ML.NET
· 单线程的Redis速度为什么快?
2019-01-30 服务化改造实践 | 如何在 Dubbo 中支持 REST