离线批量数据通道Tunnel的最佳实践及常见问题
基本介绍及应用场景
Tunnel是MaxCompute提供的离线批量数据通道服务,主要提供大批量离线数据上传和下载,
仅提供每次批量大于等于64MB数据的场景,小批量流式数据场景请使用DataHub实时数据通道以获得更好的性能和体验。
SDK上传最佳实践
import java.io.IOException;
import java.util.Date;
import com.aliyun.odps.Column;
import com.aliyun.odps.Odps;
import com.aliyun.odps.PartitionSpec;
import com.aliyun.odps.TableSchema;
import com.aliyun.odps.account.Account;
import com.aliyun.odps.account.AliyunAccount;
import com.aliyun.odps.data.Record;
import com.aliyun.odps.data.RecordWriter;
import com.aliyun.odps.tunnel.TableTunnel;
import com.aliyun.odps.tunnel.TunnelException;
import com.aliyun.odps.tunnel.TableTunnel.UploadSession;
public class UploadSample {
private static String accessId = "<your access id>";
private static String accessKey = "<your access Key>";
private static String odpsUrl = "http://service.odps.aliyun.com/api";
private static String project = "<your project>";
private static String table = "<your table name>";
private static String partition = "<your partition spec>";
public static void main(String args[]) {
// 准备工作,仅需做一次
Account account = new AliyunAccount(accessId, accessKey);
Odps odps = new Odps(account);
odps.setEndpoint(odpsUrl);
odps.setDefaultProject(project);
TableTunnel tunnel = new TableTunnel(odps);
try {
// 确定写入分区
PartitionSpec partitionSpec = new PartitionSpec(partition);
// 在服务端创建一个在本表本分区上有效期24小时的session,24小时内该session可以共计上传20000个Block数据
// 创建Session的时耗为秒级,会在服务端使用部分资源、创建临时目录等,操作较重,因此强烈建议同一个分区数据尽可能复用Session上传。
UploadSession uploadSession = tunnel.createUploadSession(project,
table, partitionSpec);
System.out.println("Session Status is : "
+ uploadSession.getStatus().toString());
TableSchema schema = uploadSession.getSchema();
// 准备数据后打开Writer开始写入数据,准备数据后写入一个Block,每个Block仅能成功上传一次,不可重复上传,CloseWriter成功代表该Block上传完成,失败可以重新上传该Block,同一个Session下最多允许20000个BlockId,即0-19999,若超出请CommitSession并且再创建一个新Session使用,以此类推。
// 单个Block内写入数据过少会产生大量小文件 严重影响计算性能, 强烈建议每次写入64MB以上数据(100GB以内数据均可写入同一Block)
// 可通过数据的平均大小与记录数量大致计算总量即 64MB < 平均记录大小*记录数 < 100GB
// maxBlockID服务端限制为20000,用户可以根据自己业务需求,每个Session使用一定数量的block例如100个,但是建议每个Session内使用block越多越好,因为创建Session是一个很重的操作
// 如果创建一个Session后仅仅上传少量数据,不仅会造成小文件、空目录等问题,还会严重影响上传整体性能(创建Session花费秒级,真正上传可能仅仅用了十几毫秒)
int maxBlockID = 20000;
for (int blockId = 0; blockId < maxBlockID; blockId++) {
// 准备好至少64MB以上数据,准备完成后方可写入
// 例如:读取若干文件或者从数据库中读取数据
try {
// 在该Block上创建一个Writer,writer创建后任意一段时间内,若某连续2分钟没有写入4KB以上数据,则会超时断开连接
// 因此建议在创建writer前在内存中准备可以直接进行写入的数据
RecordWriter recordWriter = uploadSession.openRecordWriter(blockId);
// 将读取到的所有数据转换为Tunnel Record格式并切入
int recordNumber = 1000000;
for (int index = 0; i < recordNumber; i++) {
// 将第index条原始数据转化为odps record
Record record = uploadSession.newRecord();
for (int i = 0; i < schema.getColumns().size(); i++) {
Column column = schema.getColumn(i);
switch (column.getType()) {
case BIGINT:
record.setBigint(i, 1L);
break;
case BOOLEAN:
record.setBoolean(i, true);
break;
case DATETIME:
record.setDatetime(i, new Date());
break;
case DOUBLE:
record.setDouble(i, 0.0);
break;
case STRING:
record.setString(i, "sample");
break;
default:
throw new RuntimeException("Unknown column type: "
+ column.getType());
}
}
// Write本条数据至服务端,每写入4KB数据会进行一次网络传输
// 若120s没有网络传输服务端将会关闭连接,届时该Writer将不可用,需要重新写入
recordWriter.write(record);
}
// close成功即代表该block上传成功,但是在整个Session Commit前,这些数据是在odps 临时目录中不可见的
recordWriter.close();
} catch (TunnelException e) {
// 建议重试一定次数
e.printStackTrace();
System.out.println("write failed:" + e.getMessage());
} catch (IOException e) {
// 建议重试一定次数
e.printStackTrace();
System.out.println("write failed:" + e.getMessage());
}
}
// 提交所有Block,uploadSession.getBlockList()可以自行指定需要提交的Block,Commit成功后数据才会正式写入Odps分区,Commit失败建议重试10次
for (int retry = 0; retry < 10; ++retry) {
try {
// 秒级操作,正式提交数据
uploadSession.commit(uploadSession.getBlockList());
break;
} catch (TunnelException e) {
System.out.println("uploadSession commit failed:" + e.getMessage());
} catch (IOException e) {
System.out.println("uploadSession commit failed:" + e.getMessage());
}
}
System.out.println("upload success!");
} catch (TunnelException e) {
e.printStackTrace();
} catch (IOException e) {
e.printStackTrace();
}
}
}
构造器举例说明:
PartitionSpec(String spec):通过字符串构造此类对象。
参数:
spec: 分区定义字符串,比如: pt='1',ds='2'。
因此程序中应该这样配置:private static String partition = "pt='XXX',ds='XXX'";
常见问题
MaxCompute Tunnel是什么?
Tunnel是MaxCompute的数据通道,用户可以通过Tunnel向MaxCompute中上传或者下载数据。目前Tunnel仅支持表(不包括视图View)数据的上传下载。
BlockId是否可以重复?
同一个UploadSession里的blockId不能重复。也就是说,对于同一个UploadSession,用一个blockId打开RecordWriter,写入一批数据后,调用close,
然后再commit完成后,写入成功后不可以重新再用该blockId打开另一个RecordWriter写入数据。 Block默认最多20000个,即0-19999。
Block大小是否存在限制?
一个block大小上限 100GB,强烈建议大于64M的数据,每一个Block对应一个文件,小于64MB的文件统称为小文件,小文件过多将会影响使用性能。
使用新版BufferedWriter可以更简单的进行上传功能避免小文件等问题 Tunnel-SDK-BufferedWriter
Session是否可以共享使用,存在生命周期吗?
每个Session在服务端的生命周期为24小时,创建后24小时内均可使用,也可以跨进程/线程共享使用,但是必须保证同一个BlockId没有重复使用,分布式上传可以按照如下步骤:
创建Session->数据量估算->分配Block(例如线程1使用0-100,线程2使用100-200)->准备数据->上传数据->Commit所有写入成功的Block。
Session创建后不使用是否对系统有消耗?
每个Session在创建时会生成两个文件目录,如果大量创建而不使用,会导致临时目录增多,大量堆积时可能造成系统负担,请一定避免此类行为,尽量共享利用session。
遇到Write/Read超时或IOException怎么处理?
上传数据时,Writer每写入8KB数据会触发一次网络动作,如果120秒内没有网络动作,服务端将主动关闭连接,届时Writer将不可用,请重新打开一个新的Writer写入。
建议使用 [Tunnel-SDK-BufferedWriter]接口上传数据,该接口对用户屏蔽了blockId的细节,并且内部带有数据缓存区,会自动进行失败重试。
下载数据时,Reader也有类似机制,若长时间没有网络IO会被断开连接,建议Read过程连续进行中间不穿插其他系统的接口。
MaxCompute Tunnel目前有哪些语言的SDK?
MaxCompute Tunnel目前提供Java版的SDK。
MaxCompute Tunnel 是否支持多个客户端同时上传同一张表?
支持。
MaxCompute Tunnel适合批量上传还是流式上传
MaxCompute Tunnel用于批量上传,不适合流式上传,流式上传可以使用[DataHub高速流式数据通道],毫秒级延时写入。
MaxCompute Tunnel上传数据时一定要先存在分区吗?
是的,Tunnel不会自动创建分区。
Dship 与 MaxCompute Tunnel的关系?
dship是一个工具,通过MaxCompute Tunnel来上传下载。
Tunnel upload数据的行为是追加还是覆盖?
追加的模式。
Tunnel路由功能是怎么回事?
路由功能指的是Tunnel SDK通过设置MaxCompute获取Tunnel Endpoint的功能。因此,SDK可以只设置MaxCompute的endpoint来正常工作。
用MaxCompute Tunnel上传数据时,一个block的数据量大小多大比较合适
没有一个绝对最优的答案,要综合考虑网络情况,实时性要求,数据如何使用以及集群小文件等因素。一般,如果数量较大是持续上传的模式,可以在64M - 256M,
如果是每天传一次的批量模式,可以设大一些到1G左右
使用MaxCompute Tunnel 下载, 总是提示timeout
一般是endpoint错误,请检查Endpoint配置,简单的判断方法是通过telnet等方法检测网络连通性。
通过MaxCompute Tunnel下载,抛出You have NO privilege ‘odps:Select‘ on {acs:odps:*:projects/XXX/tables/XXX}. project ‘XXX‘ is protected的异常
该project开启了数据保护功能,用户操作这是从一个项目的数据导向另一个项目,这需要该project的owner操作。
Tunnel上传抛出异常ErrorCode=FlowExceeded, ErrorMessage=Your flow quota is exceeded.**
Tunnel对请求的并发进行了控制,默认上传和下载的并发Quota为2000,任何相关的请求发出到结束过程中均会占用一个Quota单位。若出现类似错误,有如下几种建议的解决方案:
1 sleep一下再重试;
2 将project的tunnel并发quota调大,需要联系管理员评估流量压力;
3 报告project owner调查谁占用了大量并发quota,控制一下。
原文链接
本文为云栖社区原创内容,未经允许不得转载。