Java 核心类

Arrays 类

java.util.Arrays 类能方便地操作数组,它提供的所有方法都是静态的。

  • 给数组赋值:通过 fill 方法。
  • 对数组排序:通过 sort 方法,按升序。
  • 比较数组:通过 equals 方法比较数组中元素值是否相等。
  • 查找数组元素:通过 binarySearch 方法能对排序好的数组进行二分查找法操作。
序号方法和说明
1 public static int binarySearch(Object[] a, Object key)
用二分查找算法在给定数组中搜索给定值的对象(Byte,Int,double等)。数组在调用前必须排序好的。如果查找值包含在数组中,则返回搜索键的索引;否则返回 (-(插入点) - 1)。
2 public static boolean equals(long[] a, long[] a2)
如果两个指定的 long 型数组彼此相等,则返回 true。如果两个数组包含相同数量的元素,并且两个数组中的所有相应元素对都是相等的,则认为这两个数组是相等的。换句话说,如果两个数组以相同顺序包含相同的元素,则两个数组是相等的。同样的方法适用于所有的其他基本数据类型(Byte,short,Int等)。
3 public static void fill(int[] a, int val)
将指定的 int 值分配给指定 int 型数组指定范围中的每个元素。同样的方法适用于所有的其他基本数据类型(Byte,short,Int等)。
4 public static void sort(Object[] a)
对指定对象数组根据其元素的自然顺序进行升序排列。同样的方法适用于所有的其他基本数据类型(Byte,short,Int等)。

 

Number  类

会遇到需要使用对象,而不是内置数据类型的情形

所有的包装类(Integer、Long、Byte、Double、Float、Short)都是抽象类 Number 的子类。

包装类基本数据类型
Boolean boolean
Byte byte
Short short
Integer int
Long long
Character char
Float float
Double double

Java Number类

这种由编译器特别支持的包装称为装箱,所以当内置数据类型被当作对象使用的时候,编译器会把内置类型装箱为包装类。相似的,编译器也可以把一个对象拆箱为内置类型。Number 类属于 java.lang 包

 

Math 类

Math 的方法都被定义为 static 形式,通过 Math 类可以在主函数中直接调用。

public class Test {  
    public static void main (String []args)  
    {  
        System.out.println("90 度的正弦值:" + Math.sin(Math.PI/2));  
        System.out.println("0度的余弦值:" + Math.cos(0));  
        System.out.println("60度的正切值:" + Math.tan(Math.PI/3));  
        System.out.println("1的反正切值: " + Math.atan(1));  
        System.out.println("π/2的角度值:" + Math.toDegrees(Math.PI/2));  
        System.out.println(Math.PI);  
    }  
}
View Code

Number & Math 类方法

下面的表中列出的是 Number & Math 类常用的一些方法:

序号方法与描述
1 xxxValue()
将 Number 对象转换为xxx数据类型的值并返回。
2 compareTo()
将number对象与参数比较。
3 equals()
判断number对象是否与参数相等。
4 valueOf()
返回一个 Number 对象指定的内置数据类型
5 toString()
以字符串形式返回值。
6 parseInt()
将字符串解析为int类型。
7 abs()
返回参数的绝对值。
8 ceil()
返回大于等于( >= )给定参数的的最小整数,类型为双精度浮点型。
9 floor()
返回小于等于(<=)给定参数的最大整数 。
10 rint()
返回与参数最接近的整数。返回类型为double。
11 round()
它表示四舍五入,算法为 Math.floor(x+0.5),即将原来的数字加上 0.5 后再向下取整,所以,Math.round(11.5) 的结果为12,Math.round(-11.5) 的结果为-11。
12 min()
返回两个参数中的最小值。
13 max()
返回两个参数中的最大值。
14 exp()
返回自然数底数e的参数次方。
15 log()
返回参数的自然数底数的对数值。
16 pow()
返回第一个参数的第二个参数次方。
17 sqrt()
求参数的算术平方根。
18 sin()
求指定double类型参数的正弦值。
19 cos()
求指定double类型参数的余弦值。
20 tan()
求指定double类型参数的正切值。
21 asin()
求指定double类型参数的反正弦值。
22 acos()
求指定double类型参数的反余弦值。
23 atan()
求指定double类型参数的反正切值。
24 atan2()
将笛卡尔坐标转换为极坐标,并返回极坐标的角度值。
25 toDegrees()
将参数转化为角度。
26 toRadians()
将角度转换为弧度。
27 random()
返回一个随机数。

 

Character 类

Character 类用于对单个字符进行操作。Character 类在对象中包装一个基本类型 char 的值

// 原始字符 'a' 装箱到 Character 对象 ch 中
Character ch = 'a';
 
// 原始字符 'x' 用 test 方法装箱
// 返回拆箱的值到 'c'
char c = test('x');

转义序列

前面有反斜杠(\)的字符代表转义字符,它对编译器来说是有特殊含义的。

下面列表展示了Java的转义序列:

转义序列描述
\t 在文中该处插入一个tab键
\b 在文中该处插入一个后退键
\n 在文中该处换行
\r 在文中该处插入回车
\f 在文中该处插入换页符
\' 在文中该处插入单引号
\" 在文中该处插入双引号
\\ 在文中该处插入反斜杠
public class Test {
 
   public static void main(String[] args) {
      System.out.println("访问\"菜鸟教程!\"");
   }
}

Character 方法

序号方法与描述
1 isLetter()
是否是一个字母
2 isDigit()
是否是一个数字字符
3 isWhitespace()
是否是一个空白字符
4 isUpperCase()
是否是大写字母
5 isLowerCase()
是否是小写字母
6 toUpperCase()
指定字母的大写形式
7 toLowerCase()
指定字母的小写形式
8 toString()
返回字符的字符串形式,字符串的长度仅为1

 对于方法的完整列表,请参考的 java.lang.Character API 规范。

 

String 类

在 Java 中字符串属于对象,Java 提供了 String 类来创建和操作字符串。

String str = "Runoob";

String str2=new String("Runoob");

String 创建的字符串存储在公共池中,而 new 创建的字符串对象在堆上:

String s1 = "Runoob";              // String 直接创建
String s2 = "Runoob";              // String 直接创建
String s3 = s1;                    // 相同引用
String s4 = new String("Runoob");   // String 对象创建
String s5 = new String("Runoob");   // String 对象创建

 

 String 类有 11 种构造方法.用到再去细看。

实际上字符串在String内部是通过一个char[]数组表示的,因此,按下面的写法也是可以的:

String s2 = new String(new char[] {'H', 'e', 'l', 'l', 'o', '!'});

注意:String 类是不可改变的,所以你一旦创建了 String 对象,那它的值就无法改变了。

如果需要对字符串做很多修改,那么应该选择使用 StringBuffer & StringBuilder 类

 

1.String 类的一个访问器方法是 length() 方法,它返回字符串对象包含的字符数。

2. String 类提供了连接两个字符串的方法:

string1.concat(string2);
"Hello," + " runoob" + "!"

3.格式化输出

String 类使用静态方法 format() 返回一个String 对象而不是 PrintStream 对象。

String 类的静态方法 format() 能用来创建可复用的格式化字符串,而不仅仅是用于一次打印输出。

  • %s:显示字符串;
  • %d:显示整数;
  • %x:显示十六进制整数;
  • %f:显示浮点数。
System.out.printf("浮点型变量的值为 " +
                  "%f, 整型变量的值为 " +
                  " %d, 字符串变量的值为 " +
                  "is %s", floatVar, intVar, stringVar);
String fs;
fs = String.format("浮点型变量的值为 " +
                   "%f, 整型变量的值为 " +
                   " %d, 字符串变量的值为 " +
                   " %s", floatVar, intVar, stringVar);

4.字符串比较,必须使用equals()方法而不能用==

5. 拼接字符串使用静态方法join()。

6. 要分割字符串,使用split()方法。

7. 要把任意基本类型或引用类型转换为字符串,可以使用静态方法valueOf()

  • 转换为byte[]时,始终优先考虑UTF-8编码。

8. 转换为char[], Stringchar[]类型可以互相转换,方法是:

char[] cs = "Hello".toCharArray(); // String -> char[]
String s = new String(cs); // char[] -> String

如果修改了char[]数组,String并不会改变:这是因为通过new String(char[])创建新的String实例时,它并不会直接引用传入的char[]数组,而是会复制一份.

始终牢记:Java的Stringchar在内存中总是以Unicode编码表示。

String 方法

下面是 String 类支持的方法,更多详细,参看 Java String API 文档:

SN(序号)方法描述
1 char charAt(int index)
返回指定索引处的 char 值。
2 int compareTo(Object o)
把这个字符串和另一个对象比较。
3 int compareTo(String anotherString)
按字典顺序比较两个字符串。
4 int compareToIgnoreCase(String str)
按字典顺序比较两个字符串,不考虑大小写。
5 String concat(String str)
将指定字符串连接到此字符串的结尾。
6 boolean contentEquals(StringBuffer sb)
当且仅当字符串与指定的StringBuffer有相同顺序的字符时候返回真。
7 static String copyValueOf(char[] data)
返回指定数组中表示该字符序列的 String。
8 static String copyValueOf(char[] data, int offset, int count)
返回指定数组中表示该字符序列的 String。
9 boolean endsWith(String suffix)
测试此字符串是否以指定的后缀结束。
10 boolean equals(Object anObject)
将此字符串与指定的对象比较。
11 boolean equalsIgnoreCase(String anotherString)
将此 String 与另一个 String 比较,不考虑大小写。
12 byte[] getBytes()
 使用平台的默认字符集将此 String 编码为 byte 序列,并将结果存储到一个新的 byte 数组中。
13 byte[] getBytes(String charsetName)
使用指定的字符集将此 String 编码为 byte 序列,并将结果存储到一个新的 byte 数组中。
14 void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)
将字符从此字符串复制到目标字符数组。
15 int hashCode()
返回此字符串的哈希码。
16 int indexOf(int ch)
返回指定字符在此字符串中第一次出现处的索引。
17 int indexOf(int ch, int fromIndex)
返回在此字符串中第一次出现指定字符处的索引,从指定的索引开始搜索。
18 int indexOf(String str)
 返回指定子字符串在此字符串中第一次出现处的索引。
19 int indexOf(String str, int fromIndex)
返回指定子字符串在此字符串中第一次出现处的索引,从指定的索引开始。
20 String intern()
 返回字符串对象的规范化表示形式。
21 int lastIndexOf(int ch)
 返回指定字符在此字符串中最后一次出现处的索引。
22 int lastIndexOf(int ch, int fromIndex)
返回指定字符在此字符串中最后一次出现处的索引,从指定的索引处开始进行反向搜索。
23 int lastIndexOf(String str)
返回指定子字符串在此字符串中最右边出现处的索引。
24 int lastIndexOf(String str, int fromIndex)
 返回指定子字符串在此字符串中最后一次出现处的索引,从指定的索引开始反向搜索。
25 int length()
返回此字符串的长度。
26 boolean matches(String regex)
告知此字符串是否匹配给定的正则表达式。
27 boolean regionMatches(boolean ignoreCase, int toffset, String other, int ooffset, int len)
测试两个字符串区域是否相等。
28 boolean regionMatches(int toffset, String other, int ooffset, int len)
测试两个字符串区域是否相等。
29 String replace(char oldChar, char newChar)
返回一个新的字符串,它是通过用 newChar 替换此字符串中出现的所有 oldChar 得到的。
30 String replaceAll(String regex, String replacement)
使用给定的 replacement 替换此字符串所有匹配给定的正则表达式的子字符串。
31 String replaceFirst(String regex, String replacement)
 使用给定的 replacement 替换此字符串匹配给定的正则表达式的第一个子字符串。
32 String[] split(String regex)
根据给定正则表达式的匹配拆分此字符串。
33 String[] split(String regex, int limit)
根据匹配给定的正则表达式来拆分此字符串。
34 boolean startsWith(String prefix)
测试此字符串是否以指定的前缀开始。
35 boolean startsWith(String prefix, int toffset)
测试此字符串从指定索引开始的子字符串是否以指定前缀开始。
36 CharSequence subSequence(int beginIndex, int endIndex)
 返回一个新的字符序列,它是此序列的一个子序列。
37 String substring(int beginIndex)
返回一个新的字符串,它是此字符串的一个子字符串。
38 String substring(int beginIndex, int endIndex)
返回一个新字符串,它是此字符串的一个子字符串。
39 char[] toCharArray()
将此字符串转换为一个新的字符数组。
40 String toLowerCase()
使用默认语言环境的规则将此 String 中的所有字符都转换为小写。
41 String toLowerCase(Locale locale)
 使用给定 Locale 的规则将此 String 中的所有字符都转换为小写。
42 String toString()
 返回此对象本身(它已经是一个字符串!)。
43 String toUpperCase()
使用默认语言环境的规则将此 String 中的所有字符都转换为大写。
44 String toUpperCase(Locale locale)
使用给定 Locale 的规则将此 String 中的所有字符都转换为大写。
45 String trim()
返回字符串的副本,忽略前导空白和尾部空白。
46 static String valueOf(primitive data type x)
返回给定data type类型x参数的字符串表示形式。
47 contains(CharSequence chars)
判断是否包含指定的字符系列。
48 isEmpty()
判断字符串是否为空。

 

StringBuilder

Java标准库提供了StringBuilder,它是一个可变对象,可以预分配缓冲区,这样,往StringBuilder中新增字符时,不会创建新的临时对象:

StringBuilder sb = new StringBuilder(1024);
for (int i = 0; i < 1000; i++) {
    sb.append(',');
    sb.append(i);
}
String s = sb.toString();

StringBuilder还可以进行链式操作:

public class Main {
    public static void main(String[] args) {
        var sb = new StringBuilder(1024);
        sb.append("Mr ")
          .append("Bob")
          .append("!")
          .insert(0, "Hello, ");
        System.out.println(sb.toString());
    }
}

append()方法会返回this,这样,就可以不断调用自身的其他方法。

StringBuilder 类在 Java 5 中被提出,它和 StringBuffer 之间的最大不同在于 StringBuilder 的方法不是线程安全的(不能同步访问)。

由于 StringBuilder 相较于 StringBuffer 有速度优势,所以多数情况下建议使用 StringBuilder 类。

StringBuffer 方法

以下是 StringBuffer 类支持的主要方法:

序号方法描述
1 public StringBuffer append(String s)
将指定的字符串追加到此字符序列。
2 public StringBuffer reverse()
 将此字符序列用其反转形式取代。
3 public delete(int start, int end)
移除此序列的子字符串中的字符。
4 public insert(int offset, int i)
将 int 参数的字符串表示形式插入此序列中。
5 insert(int offset, String str)
将 str 参数的字符串插入此序列中。
6 replace(int start, int end, String str)
使用给定 String 中的字符替换此序列的子字符串中的字符。

以下列表列出了 StringBuffer 类的其他常用方法:

序号方法描述
1 int capacity()
返回当前容量。
2 char charAt(int index)
返回此序列中指定索引处的 char 值。
3 void ensureCapacity(int minimumCapacity)
确保容量至少等于指定的最小值。
4 void getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)
将字符从此序列复制到目标字符数组 dst
5 int indexOf(String str)
返回第一次出现的指定子字符串在该字符串中的索引。
6 int indexOf(String str, int fromIndex)
从指定的索引处开始,返回第一次出现的指定子字符串在该字符串中的索引。
7 int lastIndexOf(String str)
返回最右边出现的指定子字符串在此字符串中的索引。
8 int lastIndexOf(String str, int fromIndex)
返回 String 对象中子字符串最后出现的位置。
9 int length()
 返回长度(字符数)。
10 void setCharAt(int index, char ch)
将给定索引处的字符设置为 ch
11 void setLength(int newLength)
设置字符序列的长度。
12 CharSequence subSequence(int start, int end)
返回一个新的字符序列,该字符序列是此序列的子序列。
13 String substring(int start)
返回一个新的 String,它包含此字符序列当前所包含的字符子序列。
14 String substring(int start, int end)
返回一个新的 String,它包含此序列当前所包含的字符子序列。
15 String toString()
返回此序列中数据的字符串表示形式。

 

StringJoiner

用指定分隔符拼接字符串数组时,使用StringJoiner或者String.join()更方便;

StringJoiner拼接字符串时,还可以额外附加一个“开头”和“结尾”。

public class Main {
    public static void main(String[] args) {
        String[] names = {"Bob", "Alice", "Grace"};
        var sj = new StringJoiner(", ", "Hello ", "!");
        for (String name : names) {
            sj.add(name);
        }
        System.out.println(sj.toString());
    }
}
String[] names = {"Bob", "Alice", "Grace"};
var s = String.join(", ", names);

 

BigInteger

java.math.BigInteger就是用来表示任意大小的整数。BigInteger不会有范围限制,但缺点是速度比较慢。

BigInteger内部用一个int[]数组来模拟一个非常大的整数:

BigInteger bi = new BigInteger("1234567890");
System.out.println(bi.pow(5)); // 2867971860299718107233761438093672048294900000

BigInteger做运算的时候,只能使用实例方法,例如,加法运算:

BigInteger i1 = new BigInteger("1234567890");
BigInteger i2 = new BigInteger("12345678901234567890");
BigInteger sum = i1.add(i2); // 12345678902469135780

BigIntegerIntegerLong一样,也是不可变类,并且也继承自Number类。因为Number定义了转换为基本类型的几个方法:

  • 转换为bytebyteValue()
  • 转换为shortshortValue()
  • 转换为intintValue()
  • 转换为longlongValue()
  • 转换为floatfloatValue()
  • 转换为doubledoubleValue()

因此,通过上述方法,可以把BigInteger转换成基本类型。如果BigInteger表示的范围超过了基本类型的范围,转换时将丢失高位信息,即结果不一定是准确的。如果需要准确地转换成基本类型,可以使用intValueExact()longValueExact()等方法,在转换时如果超出范围,将直接抛出ArithmeticException异常。

 

BigDecimal

BigDecimal可以表示一个任意大小且精度完全准确的浮点数。

BigDecimal bd = new BigDecimal("123.4567");
System.out.println(bd.multiply(bd)); // 15241.55677489

BigDecimalscale()表示小数位数,例如:

BigDecimal d1 = new BigDecimal("123.45");
BigDecimal d2 = new BigDecimal("123.4500");
BigDecimal d3 = new BigDecimal("1234500");
System.out.println(d1.scale()); // 2,两位小数
System.out.println(d2.scale()); // 4
System.out.println(d3.scale()); // 0

通过BigDecimalstripTrailingZeros()方法,可以将一个BigDecimal格式化为一个相等的,但去掉了末尾0的BigDecimal

BigDecimal d1 = new BigDecimal("123.4500");
BigDecimal d2 = d1.stripTrailingZeros();
System.out.println(d1.scale()); // 4
System.out.println(d2.scale()); // 2,因为去掉了00

BigDecimal d3 = new BigDecimal("1234500");
BigDecimal d4 = d3.stripTrailingZeros();
System.out.println(d3.scale()); // 0
System.out.println(d4.scale()); // -2

如果一个BigDecimalscale()返回负数,例如,-2,表示这个数是个整数,并且末尾有2个0。

可以对一个BigDecimal设置它的scale,如果精度比原始值低,那么按照指定的方法进行四舍五入或者直接截断:

import java.math.BigDecimal;
import java.math.RoundingMode;

public class Main {
    public static void main(String[] args) {
        BigDecimal d1 = new BigDecimal("123.456789");
        BigDecimal d2 = d1.setScale(4, RoundingMode.HALF_UP); // 四舍五入,123.4568
        BigDecimal d3 = d1.setScale(4, RoundingMode.DOWN); // 直接截断,123.4567
        System.out.println(d2);
        System.out.println(d3);
    }
}

BigDecimal做加、减、乘时,精度不会丢失,但是做除法时,存在无法除尽的情况,这时,就必须指定精度以及如何进行截断

BigDecimal d1 = new BigDecimal("123.456");
BigDecimal d2 = new BigDecimal("23.456789");
BigDecimal d3 = d1.divide(d2, 10, RoundingMode.HALF_UP); // 保留10位小数并四舍五入
BigDecimal d4 = d1.divide(d2); // 报错:ArithmeticException,因为除不尽

还可以对BigDecimal做除法的同时求余数。调用divideAndRemainder()方法时,返回的数组包含两个BigDecimal,分别是商和余数,其中商总是整数,余数不会大于除数。我们可以利用这个方法判断两个BigDecimal是否是整数倍数。

比较BigDecimal

必须使用compareTo()方法来比较,它根据两个值的大小分别返回负数、正数和0,分别表示小于、大于和等于。而不能使用equals()

实际上一个BigDecimal是通过一个BigInteger和一个scale来表示的,即BigInteger表示一个完整的整数,而scale表示小数位数。

BigDecimal也是从Number继承的,也是不可变对象。

 

随机数

Random

Random用来创建伪随机数。所谓伪随机数,是指只要给定一个初始的种子,产生的随机数序列是完全一样的。

要生成一个随机数,可以使用nextInt()nextLong()nextFloat()nextDouble()

Random r = new Random();
r.nextInt(); // 2071575453,每次都不一样
r.nextInt(10); // 5,生成一个[0,10)之间的int
r.nextLong(); // 8811649292570369305,每次都不一样
r.nextFloat(); // 0.54335...生成一个[0,1)之间的float
r.nextDouble(); // 0.3716...生成一个[0,1)之间的double

如果我们在创建Random实例时指定一个种子,就会得到完全确定的随机数序列:

import java.util.Random;
public class Main {
    public static void main(String[] args) {
        Random r = new Random(12345);
        for (int i = 0; i < 10; i++) {
            System.out.println(r.nextInt(100));
        }
        // 51, 80, 41, 28, 55...
    }
}

Math.random()实际上内部调用了Random类,所以它也是伪随机数,只是我们无法指定种子。

 

SecureRandom

SecureRandom就是用来创建安全的随机数的:

SecureRandom sr = new SecureRandom();
System.out.println(sr.nextInt(100));

SecureRandom的安全性是通过操作系统提供的安全的随机种子来生成随机数。这个种子是通过CPU的热噪声、读写磁盘的字节、网络流量等各种随机事件产生的“熵”。

在密码学中,安全的随机数非常重要。如果使用不安全的伪随机数,所有加密体系都将被攻破。因此,时刻牢记必须使用SecureRandom来产生安全的随机数。

import java.util.Arrays;
import java.security.SecureRandom;
import java.security.NoSuchAlgorithmException;

public class Main {
    public static void main(String[] args) {
        SecureRandom sr = null;
        try {
            sr = SecureRandom.getInstanceStrong(); // 获取高强度安全随机数生成器
        } catch (NoSuchAlgorithmException e) {
            sr = new SecureRandom(); // 获取普通的安全随机数生成器
        }
        byte[] buffer = new byte[16];
        sr.nextBytes(buffer); // 用安全随机数填充buffer
        System.out.println(Arrays.toString(buffer));
    }
}

 

posted @ 2022-09-15 10:27  云long  阅读(49)  评论(0编辑  收藏  举报