Python3 继承原理,多继承,菱形问题,派生,重用,组合
1.经典类和新式类
在Python2中有经典类与新式类之分,没有显式地继承object类的类,以及该类的子类,都是经典类。
显式地继承object的类,以及该类的子类,都是新式类。
而在Python3中,即使没有显式地继承object,也会默认继承该类,因而在Python3中统一都是新式类。
2.继承与抽象
要找出类与类之间的继承关系,需要先抽象,再继承。抽象即总结相似之处,总结对象之间的相似之处得到类,总结类与类之间的相似之处就可以得到父类,如下图所示
基于抽象的结果,我们就找到了继承关系
基于上图我们可以看出类与类之间的继承指的是什么’是’什么的关系(比如人类,猪类,猴类都是动物类)。子类可以继承/遗传父类所有的属性,因而继承可以用来解决类与类之间的代码重用性问题。
3.、属性查找
有了继承关系,对象在查找属性时,先从对象自己的__dict__中找,如果没有则去子类中找,然后再去父类中找。
如果子类重写了父类的方法,将会调用子类的方法。父类如果不想让子类覆盖自己的方法,可以采用双下划线开头的方式将方法设置为私有的。
>>> class Foo: ... def __f1(self): # 变形为_Foo__fa ... print('Foo.f1') ... def f2(self): ... print('Foo.f2') ... self.__f1() # 变形为self._Foo__fa,因而只会调用自己所在的类中的方法 ... >>> class Bar(Foo): ... def __f1(self): # 变形为_Bar__f1 ... print('Foo.f1') ... >>> >>> b=Bar() >>> b.f2() #在父类中找到f2方法,进而调用b._Foo__f1()方法,同样是在父类中找到该方法 Foo.f2 Foo.f1
4.继承的实现原理
4.1菱形问题
在Python中,一个子类是可以同时继承多个父类的,这固然可以带来一个子类可以对多个不同父类加以重用的好处,
但也有可能引发著名的 Diamond problem菱形问题(或称钻石问题,有时候也被称为“死亡钻石”),菱形其实就是对下面这种继承结构的形象比喻
A类在顶部,B类和C类分别位于其下方,D类在底部将两者连接在一起形成菱形。
这种继承结构下导致的问题称之为菱形问题:如果A中有一个方法,B和/或C都重写了该方法,
而D没有重写它,那么D继承的是哪个版本的方法:B的还是C的?如下所示
class A(object): def test(self): print('from A') class B(A): def test(self): print('from B') class C(A): def test(self): print('from C') class D(B,C): pass obj = D() obj.test() # 结果为:from B
要想搞明白obj.test()是如何找到方法test的,需要了解python的继承实现原理
4.2继承原理
python到底是如何实现继承的呢?
对于你定义的每一个类,Python都会计算出一个方法解析顺序(MRO)列表,该MRO列表就是一个简单的所有基类的线性顺序列表,如下:
>>> D.mro() # 新式类内置了mro方法可以查看线性列表的内容,经典类没有该内置该方法 [<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.A'>, <class 'object'>]
python会在MRO列表上从左到右开始查找基类,直到找到第一个匹配这个属性的类为止。
而这个MRO列表的构造是通过一个C3线性化算法来实现的。我们不去深究这个算法的数学原理。
它实际上就是合并所有父类的MRO列表并遵循如下三条准则:
1.子类会先于父类被检查
2.多个父类会根据它们在列表中的顺序被检查
3.如果对下一个类存在两个合法的选择,选择第一个父类
所以obj.test()的查找顺序是,先从对象obj本身的属性里找方法test,没有找到,
则参照属性查找的发起者(即obj)所处类D的MRO列表来依次检索,首先在类D中未找到,然后再B中找到方法test。
4.3深度优先和广度优先
参照下述代码,多继承结构为非菱形结构,此时,会按照先找B这一条分支,然后再找C这一条分支,最后找D这一条分支的顺序直到找到我们想要的属性
class E: def test(self): print('from E') class F: def test(self): print('from F') class B(E): def test(self): print('from B') class C(F): def test(self): print('from C') class D: def test(self): print('from D') class A(B, C, D): # def test(self): # print('from A') pass print(A.mro()) ''' [<class '__main__.A'>, <class '__main__.B'>, <class '__main__.E'>, <class '__main__.C'>, <class '__main__.F'>, <class '__main__.D'>, <class 'object'>] ''' obj = A() obj.test() # 结果为:from B # 可依次注释上述类中的方法test来进行验证
如果继承关系为菱形结构,那么经典类与新式类会有不同MRO,分别对应属性的两种查找方式:深度优先和广度优先
经典类:
python3没有经典类了,但是作为概念要知道。
class G: # 在python2中,未继承object的类及其子类,都是经典类 def test(self): print('from G') class E(G): def test(self): print('from E') class F(G): def test(self): print('from F') class B(E): def test(self): print('from B') class C(F): def test(self): print('from C') class D(G): def test(self): print('from D') class A(B,C,D): # def test(self): # print('from A') pass obj = A() obj.test() # 如上图,查找顺序为:obj->A->B->E->G->C->F->D->object # 可依次注释上述类中的方法test来进行验证,注意请在python2.x中进行测试
新式类:
class G(object):
def test(self):
print('from G')
class E(G):
def test(self):
print('from E')
class F(G):
def test(self):
print('from F')
class B(E):
def test(self):
print('from B')
class C(F):
def test(self):
print('from C')
class D(G):
def test(self):
print('from D')
class A(B,C,D):
# def test(self):
# print('from A')
pass
obj = A()
obj.test() # 如上图,查找顺序为:obj->A->B->E->C->F->D->G->object
# 可依次注释上述类中的方法test来进行验证
4.4Pyton Mixins机制
一个类需要继承多个类
民航飞机、直升飞机、轿车都是一个(is-a)交通工具,前两者都有一个功能是飞行fly,但是轿车没有,所以如下所示我们把飞行功能放到交通工具这个父类中是不合理的
class Vehicle: # 交通工具 def fly(self): ''' 飞行功能相应的代码 ''' print("I am flying") class CivilAircraft(Vehicle): # 民航飞机 pass class Helicopter(Vehicle): # 直升飞机 pass class Car(Vehicle): # 汽车并不会飞,但按照上述继承关系,汽车也能飞了 pass
但是如果民航飞机和直升机都各自写自己的飞行fly方法,又违背了代码尽可能重用的原则(如果以后飞行工具越来越多,那会重复代码将会越来越多)。
让民航飞机和直升飞机同时继承交通工具以及飞行器两个父类,这样就出现了多重继承。这时又违背了继承必须是”is-a”关系。
Python提供了Mixins机制,简单来说Mixins机制指的是子类混合(mixin)不同类的功能,而这些类采用统一的命名规范(例如Mixin后缀),
以此标识这些类只是用来混合功能的,并不是用来标识子类的从属"is-a"关系的,所以Mixins机制本质仍是多继承,但同样遵守”is-a”关系,如下:
class Vehicle: # 交通工具 pass class FlyableMixin: def fly(self): ''' 飞行功能相应的代码 ''' print("I am flying") class CivilAircraft(FlyableMixin, Vehicle): # 民航飞机 pass class Helicopter(FlyableMixin, Vehicle): # 直升飞机 pass class Car(Vehicle): # 汽车 pass # ps: 采用某种规范(如命名规范)来解决具体的问题是python惯用的套路
可以看到,上面的CivilAircraft、Helicopter类实现了多继承,不过它继承的第一个类我们起名为FlyableMixin,而不是Flyable,这个并不影响功能,但是会告诉后来读代码的人,这个类是一个Mixin类,表示混入(mix-in),这种命名方式就是用来明确地告诉别人(python语言惯用的手法),这个类是作为功能添加到子类中,而不是作为父类,它的作用同Java中的接口。所以从含义上理解,CivilAircraft、Helicopter类都只是一个Vehicle,而不是一个飞行器。
使用Mixin类实现多重继承要非常小心
- 首先它必须表示某一种功能,而不是某个物品,python 对于mixin类的命名方式一般以 Mixin, able, ible 为后缀
- 其次它必须责任单一,如果有多个功能,那就写多个Mixin类,一个类可以继承多个Mixin,为了保证遵循继承的“is-a”原则,只能继承一个标识其归属含义的父类
- 然后,它不依赖于子类的实现
- 最后,子类即便没有继承这个Mixin类,也照样可以工作,就是缺少了某个功能。(比如飞机照样可以载客,就是不能飞了)
5.派生与方法重用
想在子类派生出的方法内重用父类的功能,有两种实现方式
方法一:“指名道姓”地调用某一个类的函数
>>> class Teacher(People): ... def __init__(self,name,sex,age,title): ... People.__init__(self,name,age,sex) #调用的是函数,因而需要传入self ... self.title=title ... def teach(self): ... print('%s is teaching' %self.name)
方法二:super()
调用super()会得到一个特殊的对象,该对象专门用来引用父类的属性,且严格按照MRO规定的顺序向后查找
>>> class Teacher(People): ... def __init__(self,name,sex,age,title): ... super().__init__(name,age,sex) #调用的是绑定方法,自动传入self ... self.title=title ... def teach(self): ... print('%s is teaching' %self.name) ...
6. 组合
在一个类中以另外一个类的对象作为数据属性,称为类的组合。组合与继承都是用来解决代码的重用性问题。不同的是:继承是一种“是”的关系,比如老师是人、学生是人,当类之间有很多相同的之处,应该使用继承;而组合则是一种“有”的关系,比如老师有生日,老师有多门课程,当类之间有显著不同,并且较小的类是较大的类所需要的组件时,应该使用组合,如下示例
class Course: def __init__(self,name,period,price): self.name=name self.period=period self.price=price def tell_info(self): print('<%s %s %s>' %(self.name,self.period,self.price)) class Date: def __init__(self,year,mon,day): self.year=year self.mon=mon self.day=day def tell_birth(self): print('<%s-%s-%s>' %(self.year,self.mon,self.day)) class People: school='清华大学' def __init__(self,name,sex,age): self.name=name self.sex=sex self.age=age #Teacher类基于继承来重用People的代码,基于组合来重用Date类和Course类的代码 class Teacher(People): #老师是人 def __init__(self,name,sex,age,title,year,mon,day): super().__init__(name,age,sex) self.birth=Date(year,mon,day) #老师有生日 self.courses=[] #老师有课程,可以在实例化后,往该列表中添加Course类的对象 def teach(self): print('%s is teaching' %self.name) python=Course('python','3mons',3000.0) linux=Course('linux','5mons',5000.0) teacher1=Teacher('lili','female',28,'博士生导师',1990,3,23) # teacher1有两门课程 teacher1.courses.append(python) teacher1.courses.append(linux) # 重用Date类的功能 teacher1.birth.tell_birth() # 重用Course类的功能 for obj in teacher1.courses: obj.tell_info()
此时对象teacher1集对象独有的属性、Teacher类中的内容、Course类中的内容于一身(都可以访问到),是一个高度整合的产物
摘自:https://zhuanlan.zhihu.com/p/109331525