Python3 pickle模块

用于序列化的两个模块
  json:用于字符串和Python数据类型间进行转换
  pickle: 用于python特有的类型和python的数据类型间进行转换
  json提供四个功能:dumps,dump,loads,load
  pickle提供四个功能:dumps,dump,loads,load

pickle可以存储什么类型的数据呢?

  所有python支持的原生类型:布尔值,整数,浮点数,复数,字符串,字节,None。

  由任何原生类型组成的列表,元组,字典和集合。

  函数,类,类的实例

什么叫序列化?
  把对象在内存中的结构转换成便于存储或传输的二进制或文本格式,而且以后可以在同一个系统或不同的系统中重建对象的副本。pickle模块能把任何Python对象序列化成二进制格式。

常采用下面的方式使用:

import pickle
pickle.dump(obj,f)
pickle.dumps(obj,f)
pickle.load(f)
pickle.loads(f)

  使用pickle模块你可以把Python对象直接保存到文件,而不需要把他们转化为字符串,也不用底层的文件访问操作把它们写入到一个二进制文件里。 pickle模块会创建一个python语言专用的二进制格式,你基本上不用考虑任何文件细节,它会帮你干净利落地完成读写独享操作,唯一需要的只是一个合法的文件句柄。

pickle模块中的两个主要函数是dump()和load():

  dump()函数接受一个文件句柄和一个数据对象作为参数,把数据对象以特定的格式保存到给定的文件中。当我们使用load()函数从文件中取出已保存的对象时,pickle知道如何恢复这些对象到它们本来的格式。

  dumps()函数执行和dump() 函数相同的序列化。取代接受流对象并将序列化后的数据保存到磁盘文件,这个函数简单的返回序列化的数据。

  loads()函数执行和load() 函数一样的反序列化。取代接受一个流对象并去文件读取序列化后的数据,它接受包含序列化后的数据的str对象, 直接返回的对象。

示例:

# -*- coding:utf-8 -*-
import pickle
obj = 123, "abcdef", ["ac", 123], {"key": "value", "key1": "value1"}
print(obj)
# 序列化到文件
with open(r"F:\pycodes\ML\a.txt", "wb") as f:
 pickle.dump(obj, f)
with open(r"F:\\pycodes\\ML\\a.txt", "rb") as f:
 print(pickle.load(f))# 输出:(123, 'abcdef', ['ac', 123], {'key': 'value', 'key1': 'value1'})
# 序列化到内存(字符串格式保存),然后对象可以以任何方式处理如通过网络传输
obj1 = pickle.dumps(obj)
print(type(obj1))# 输出<class 'bytes'>
print(obj1)# 输出:python专用的存储格式 b'\x80\x03(K{X\x06\x00\x00\x00abcdefq\x00]q\x01(X\x02\x00\x00\x00acq\x02K{e}q\x03(X\x03\x00\x00\x00keyq\x04X\x05\x00\x00\x00valueq\x05X\x04\x00\x00\x00key1q\x06X\x06\x00\x00\x00value1q\x07utq\x08.'
obj2 = pickle.loads(obj1)
print(type(obj2))# 输出:<class 'tuple'>
print(obj2) # 输出:(123, 'abcdef', ['ac', 123], {'key': 'value', 'key1': 'value1'})

 

json

要在不同的编程语言之间传递对象,更好的方法是序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输。

 

 

 

pickle模块详解

pickle模块实现了用于序列化和反序列化Python对象结构的二进制协议。 “Pickling”是将Python对象层次结构转换为字节流的过程, “unpickling”是反向操作,从而将字节流(来自二进制文件或类似字节的对象)转换回对象层次结构。pickle模块对于错误或恶意构造的数据是不安全的。

pickle协议和JSON(JavaScript Object Notation)的区别 :

  1. JSON是一种文本序列化格式(它输出unicode文本,虽然大部分时间它被编码utf-8),而pickle是二进制序列化格式;

  2. JSON是人类可读的,而pickle则不是;

  3. JSON是可互操作的,并且在Python生态系统之外广泛使用,而pickle是特定于Python的;

默认情况下,JSON只能表示Python内置类型的子集,而不能表示自定义类; pickle可以表示极其庞大的Python类型(其中许多是自动的,通过巧妙地使用Python的内省工具;复杂的案例可以通过实现特定的对象API来解决)。

pickle 数据格式是特定于Python的。它的优点是没有外部标准强加的限制,例如JSON或XDR(不能代表指针共享); 但是这意味着非Python程序可能无法重建pickled Python对象。

默认情况下,pickle数据格式使用相对紧凑的二进制表示。如果您需要最佳尺寸特征,则可以有效地压缩数据。

模块接口

要序列化对象层次结构,只需调用该dumps()函数即可。同样,要对数据流进行反序列化,请调用该loads()函数。但是,如果您想要更多地控制序列化和反序列化,则可以分别创建一个Pickler或一个Unpickler对象。

pickle模块提供以下常量:

pickle.HIGHEST_PROTOCOL

整数, 可用的最高协议版本。这个值可以作为一个被传递协议的价值函数 dump()dumps()以及该Pickler 构造函数。

pickle.DEFAULT_PROTOCOL

整数,用于编码的默认协议版本。可能不到HIGHEST_PROTOCOL。目前,默认协议是3,这是为Python 3设计的新协议。

pickle模块提供以下功能,使酸洗过程更加方便:

pickle.dump(obj,file,protocol = None,*,fix_imports = True 

将obj对象的编码pickle编码表示写入到文件对象中,相当于Pickler(file,protocol).dump(obj)

可供选择的协议参数是一个整数,指定pickler使用的协议版本,支持的协议是0到HIGHEST_PROTOCOL。如果未指定,则默认为DEFAULT_PROTOCOL。如果指定为负数,则选择HIGHEST_PROTOCOL

文件参数必须具有接受单个字节的参数写方法。因此,它可以是为二进制写入打开的磁盘文件, io.BytesIO实例或满足此接口的任何其他自定义对象。

如果fix_imports为true且protocol小于3,则pickle将尝试将新的Python 3名称映射到Python 2中使用的旧模块名称,以便使用Python 2可读取pickle数据流。

pickle.dumps(obj,protocol = None,*,fix_imports = True 

将对象的pickled表示作为bytes对象返回,而不是将其写入文件。

参数protocol和fix_imports具有与in中相同的含义 dump()

pickle.load(file,*,fix_imports = True,encoding =“ASCII”,errors =“strict” 

从打开的文件对象 文件中读取pickle对象表示,并返回其中指定的重构对象层次结构。这相当于Unpickler(file).load()

pickle的协议版本是自动检测的,因此不需要协议参数。超过pickle对象的表示的字节将被忽略。

参数文件必须有两个方法,一个采用整数参数的read()方法和一个不需要参数的readline()方法。两种方法都应返回字节。因此,文件可以是为二进制读取而打开的磁盘文件,io.BytesIO对象或满足此接口的任何其他自定义对象。

可选的关键字参数是fix_imports,encoding和errors,用于控制Python 2生成的pickle流的兼容性支持。如果fix_imports为true,则pickle将尝试将旧的Python 2名称映射到Python 3中使用的新名称。编码和 错误告诉pickle如何解码Python 2编码的8位字符串实例; 这些默认分别为'ASCII'和'strict'。该编码可以是“字节”作为字节对象读取这些8位串的实例。使用encoding='latin1'所需的取储存NumPy的阵列和实例datetimedate并且time被Python 2解码。

pickle.loads(bytes_object,*,fix_imports = True,encoding =“ASCII”,errors =“strict” 

bytes对象读取pickle对象层次结构并返回其中指定的重构对象层次结构。

pickle的协议版本是自动检测的,因此不需要协议参数。超过pickle对象的表示的字节将被忽略。

复制代码
import numpy as np
import pickle
import io

if __name__ == '__main__':
    path = 'test'
    f = open(path, 'wb')
    data = {'a':123, 'b':'ads', 'c':[[1,2],[3,4]]}
    pickle.dump(data, f)
    f.close()

    f1 = open(path, 'rb')
    data1 = pickle.load(f1)
    print(data1)
复制代码

对于python格式的数据集,我们就可以使用pickle进行加载了,下面与cifar10数据集为例,进行读取和加载:

复制代码
import numpy as np
import pickle
import random
import matplotlib.pyplot as plt
from PIL import Image

path1 = 'D:\\tmp\cifar10_data\cifar-10-batches-py\data_batch_1'
path2 = 'D:\\tmp\cifar10_data\cifar-10-batches-py\data_batch_2'
path3 = 'D:\\tmp\cifar10_data\cifar-10-batches-py\data_batch_3'
path4 = 'D:\\tmp\cifar10_data\cifar-10-batches-py\data_batch_4'
path5 = 'D:\\tmp\cifar10_data\cifar-10-batches-py\data_batch_5'

path6 = 'D:\\tmp\cifar10_data\cifar-10-batches-py\\test_batch'

if __name__ == '__main__':
    with open(path1, 'rb') as fo:
        data = pickle.load(fo, encoding='bytes')

        # print(data[b'batch_label'])
        # print(data[b'labels'])
        # print(data[b'data'])
        # print(data[b'filenames'])

        print(data[b'data'].shape)

        images_batch = np.array(data[b'data'])
        images = images_batch.reshape([-1, 3, 32, 32])
        print(images.shape)
        imgs = images[5, :, :, :].reshape([3, 32, 32])
        img = np.stack((imgs[0, :, :], imgs[1, :, :], imgs[2, :, :]), 2)

        print(img.shape)

        plt.imshow(img)
        plt.axis('off')
        plt.show()
复制代码

运行结果:

接下来就可以读取数据进行训练了。

 

参考自:https://www.jb51.net/article/170110.htm

https://www.cnblogs.com/baby-lily/p/10990026.html

 

posted @ 2020-04-09 11:06  云long  阅读(615)  评论(0编辑  收藏  举报